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Biomedical science, which initially required only conventional research in the laboratory, 
currently involves information technology and has created bioinformatics in its 
development. Bioinformatics, a branch of biology, quantitatively analyzes information 
within biological macromolecules using software. Contemporary applications of 
bioinformatics have advanced biotechnological, medical, and pharmaceutical practices. 
Among the established applications of bioinformatics is diagnosing lung diseases using 
the genome-wide association study (GWAS) technique. Owing to sequencing technology 
and rapid computational methods, this technique is applied to analyze the link between 
genes with essential traits in the population, thus mapping the target genes to diagnose 
and treat diseases. The lung diseases diagnosed using GWAS include the responsible 
locus in asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. 
Moreover, it can identify the treatment for COPD and suggest a new locus in lung cancer. 
Advancing the current gene-mapping technology demands genotype and phenotype data 
to study disease-linked genomes. Currently, bioinformatics is barely known and receives 
little attention in Indonesia. However, it can grow rapidly through open-source basis data 
and cross-disciplinary collaboration. 
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INTRODUCTION 
 

Bioinformatics synthesizes biology and 
information technology. It is defined as a technology to 
collect, store, analyze, interpret, disseminate, and apply 
biological molecular data. In its application, data 
considered key factors of a phenomenon are used, i.e., 
genetic macromolecule, including deoxyribonucleic acid 
(DNA), ribonucleic acid (RNA), and protein. The most 
integral tool in bioinformatics is software supported by 
connections and databases. 

 
Currently, large accessible databases include the 
GenBank DNA for nucleotide database, the Swiss-Prot 
protein database for amino acid sequence, and the 
Protein Data Bank for 3D protein structures. Through 
bioinformatics, all data from genome projects can be 
stored systematically and rapidly with high accuracy and 
analyzed for specific purposes. Among the established 
applications of bioinformatics is diagnosing lung 
diseases using the genome-wide association study 
(GWAS) technique.1,2  
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GWAS technique involves rapid scans of 
complete sets of DNA or genomes from several 
individuals to identify genetic variation linked with a 
particular disease. Researchers may use the information 
to detect, treat, and prevent diseases. GWAS is valuable 
in diagnostics, especially in identifying genetic variation 
associated with general and complex diseases, including 
asthma, cancer, diabetes, cardiac disease, and 
psychiatric disorders.3 

Genetics has identified the role of telomere and 
surfactant production genes in pulmonary fibrosis. The 
heterogeneity of lung cancer GWAS is found in each 
risk-associated locus. Another established role of 
GWAS in lung cancer is determining groups of patients 
who respond to therapies and the susceptibility of 
another group to the side effects of medications. In 
chronic obstructive pulmonary disease (COPD), GWAS 
is applied for responsible locus and its treatment, 
including diagnostic scoring called polygenic risk score 
(PRS), to predict disease risk. Meanwhile, most asthma 
GWAS reported single nucleotide polymorphisms 
(SNPs) at the 17q12-21 locus. In this study, the authors 
elaborate on the general framework of GWAS data 
analysis and the role of integrated bioinformatics, which 
elucidates disease pathology and its pharmacotherapy, 
especially in lung disease.4–7 

 

APPLICATION OF CLINICAL GENOMICS  
Bioinformatics application in medicine is widely 

known as translational bioinformatics (TBI). American 
Medical Informatics Association stated that TBI is a 
developed  storage,  analysis,  and  interpretation method 
 

to improve biomedical and genomic data transformation 
for proactive, predictive, preventive, and participative 
health practices. The TBI developed a method to convert 
abundant data into health data. Russ Altman of Stanford 
University defined TBI as an informatic method to 
correlate biological entities, including genes, proteins, 
and small molecules, with clinical entities, such as 
diseases, symptoms, and medication.3 

In Figure 1, the Y-axis describes the central 
dogma of informatics, converting data into information 
and information into knowledge. The X-axis is the 
spectrum of translation from desk work to the patient. 
TBI incorporates data and knowledge spectrum, 
bridging the gap between laboratory research and its 
clinical application. TBI applications are classified into 
four, (1) Clinical big data or use of electronic medical 
records for genomic study or others, (2) Genomic and 
pharmacogenomic study and its application in clinical 
practice, (3) Omics study for medication development 
and reuse, and (4) Individual genomic test, including 
several ethical, law, and social issues associated with the 
service. Genomics is a discipline addressing the 
structure, function, evolution, and mapping of the 
genome to define and qualify the gene.3 

Genomics study is the most popular of the four 
bioinformatics application categories and most 
implemented in clinical practice. In general, genomics 
study is categorized into structural genomics study, 
characterizing all physical traits of the genome, and 
functional genomics study, describing transcriptome 
with a total number of information containing molecules 
expressed by the gene of an organism and proteome. 
GWAS is an instance of functional genomics study.3

 

Figure 1. Translational bioinformatics in the health context7 
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GENOME-WIDE ASSOCIATION STUDY 

GWAS identifies millions of SNPs in the human 
genome, where its subset compiles common genetic 
variations through a phenomenon called linkage 
disequilibrium (LD). LD occurs when a group of 
associated SNPs is likely more inherited than 
coincidentally inherited. GWAS has developed 
remarkably over the past 15 years in terms of sample 
size and number of traits involved, with 128,550 
associations in 4,000 publications reported in the GWAS 
catalog.8  

 
GWAS Definition 

GWAS can identify SNP genetic variations linked 
with certain diseases and involves the whole genome of 
several individuals. The GWAS approach includes a 
complete set of DNA or genomes of several individuals 
affected or not by diseases. GWAS identifies 
correlations between genetic markers and phenotypic 
traits by analyzing thousands of individuals in case-
control or quantitative studies.9  

GWAS is a population-based study aiming to 
determine SNPs in different loci. SNPs are variations in 
a single nucleotide base structure, namely adenine, 
thymine, cytosine, or guanine, of a genome, resulting in 
genetic variations in a population.10 

GWAS aims to identify correlations between 
genotype and phenotype through different tests of allele 
frequency in interindividual genetic variation. It can 
estimate the copy of variation number or sequence in the 
human genome, although most GWAS genetic study 
variation also investigates SNPs. GWAS reports that 
correlated SNP sequence are significantly associated 
with a trait called genomic risk locus.8 

 
GWAS Workflow  

GWAS experimental workflow incorporates 
several steps described in Figure 2.9 GWAS steps: (a) 
Determining study population. GWAS requires a large 
data to produce GWAS-appropriate data. The data may 
be determined by utilizing special software, such as 
CaTs, a simple platform for estimating power in 
extensive genetic association studies such as the 
Genetics Personality Consortium. Data may be collected 
from cohort studies or available genetic and phenotypic 
information from Biobanks or repositories by disease-
focused recruitment. Randomization should be 
thoroughly considered, and recruitment strategy should 
not lead to collider bias.8,11,12 (b) Genotype data may be 
gathered through microarrays to identify general 

variants or next-generation sequencing methods, such as 
whole genome sequencing (WGS) or whole exome 
sequencing, to identify rare variants. Microarray is the 
most commonly applied method for GWAS due to its 
more reasonable cost than that of next-generation 
sequencing.8 (c) Data processing. Selected data includes 
anonymous identity numbers, coded familial 
relationships, gender, phenotype information, and all 
genotype variations and information. Data input requires 
precise quality control to produce more significant 
results. Quality control involves steps on many levels, 
including determining DNA and genotypes, deleting 
incomplete SNPs, detecting population strata, and 
estimating principal components.8 (d) Genotype data is 
gradually examined, wherein the expected genotype is 
tested based on the information of population reference 
or on a repository, such as in the case of the 1,000 
genomes project, a project aiming to describe human 
genetic variation in general by applying WGS on 
various individuals from populations or the transomics 
for precision medicine, a program describing the genetic 
and biological architecture of heart, lung, blood, and 
sleep disorder, with its ultimate goal of improving 
diagnosis capacity, medication, and disease prevention. 
In this case, SNP1 and SNP3 genotypes are estimated 
based on other SNP genotype tests.8,13,14 (e) Genetic 
association test is conducted on every genetic variant 
using an appropriate model, including additive, 
nonadditive, linear, or logistic regression. Confounding 
factors are controlled, including population strata. The 
outcome is examined for irregular patterns, and 
summary statistics should be established.8 (f) Several 
small cohorts are combined using standard statistical 
analysis. Meta-analysis is presented in summary 
statistics, which may be outlined using the fixed or 
random effect models to assess the heterogeneity of 
results.8 (g) The result may be replicated for independent 
cohorts. External replication for independent cohorts 
should match the lineage, and the identified cohort 
should not share with any individual or family member.8 
(h) In silico GWAS analysis uses external source 
information. It may include in silico mapping, SNPs to 
genetic mapping, and gene to functional mapping, 
including pathway analysis, genetic correlation analysis, 
Mendel randomization, and polygenic risk prediction. 
The functional hypothesis may be examined following 
GWAS using experimental techniques, such as clustered 
regularly interspaced short palindromic repeats 
(CRISPR), or the result can be confirmed through 
human trait or disease models.8 
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Figure 2. GWAS steps10 

 
APPLICATION OF GWAS IN PULMONARY 
DISEASE  
 
Role of GWAS in pulmonary fibrosis  

GWAS shows that pulmonary fibrosis is a 
sporadic disease with a locus linked with another locus 
containing genes associated with lung defense, telomere 
maintenance, and cell adhesion. The genetic alteration 
has a 30% chance of idiopathic pulmonary fibrosis 
(IPF), and the molecular mechanism of the disease is 
mostly unclear. A study conducted by Allen, et al. 
(2020) is currently the largest collaborative GWAS IPF 
study.4 The study population involved all patients and 
control variables of European descent, with 2,668 
patients with IPF and 8,951 controls. Two sets of cases 
and independent controls were included in the cohort, 
with a total of 1,467 patients with IPF and 11,874 
controls.4,15,16 

The study by Allen, et al. (2020) confirmed that 
risk in locus 11p15 was promoted by a promotor variant 
of MUC5B.4 Three new signals of association adjacent 
to KIF15 in 3p21.31, MAD1L1 in 7p22.3, and DEP 
domain-containing mTOR-interacting protein 
(DEPTOR) in 8q24.12 were also identified and 
remained significant following adjustment for diversity. 
The authors concluded that the variant adjacent to 
KIF15 was associated with low gene expression in the 
brain, and the MAD1L1 variant was associated with low 
gene expression in the heart. The variant adjacent to 
DEPTOR was associated with low gene expression in 
the lungs, colon, and integument. Furthermore, 
DEPTOR encodes a protein interacting with mTOR and 
inhibits its kinase activities. The authors concluded that 

the variant contributed to IPF pathogenesis by reducing 
mTOR signal inhibition, thus promoting collagen 
synthesis and fibrogenesis induction by transforming 
growth factor ß1 (TGF-ß1).4,15,16 

The study by Allen, et al. (2020) is a huge 
milestone in the TBI for pulmonary fibrosis.4 However, 
the study only involved European descent, preventing 
generalization for a large population. Around 60–70% of 
non-Hispanic whites carry at least a copy of MUC5B 
rs35705950 T, the most powerful and replicated variant 
of IPF risk. However, this variant is rarely identified in 
the Korean population with IPF. Thus, enhancing our 
understanding of genetic risk for IPF in different racial 
groups is crucial.4,15,16  

Further study is recommended to identify the 
genetic factors in disease risk of all phenotype 
spectrums of interstitial lung disease (ILD). GWAS has 
exclusively focused on IPF until now. However, a study 
addressing rheumatoid arthritis and chronic 
hypersensitivity pneumonitis associated ILD reported a 
similar prevalence of MUC5B promotor polymorphism 
and rare variant in telomere-associated gene as reported 
in the IPF study.15 In the future, ILD genetic study is 
expected to identify relationships between genetic risk 
and certain ILD phenotypes.4,15,16 

 
Role of GWAS in lung cancer  

The first GWAS in lung cancer was reported in 
2008.5 Three independent studies identified cancer-
susceptible locus in chromosome 15q.5 A study has 
identified two SNPs linked with lung cancer, 
chromosome 15q25.5 Other studies suggest new loci 
with cancer risk.5 Two SNPs residing in separate genes, 
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BAG6 and MSH5, are 600 kilobases apart in 
chromosome 6p21 and are significantly correlated with 
lung cancer. The strongest association is also identified 
in chromosome 5p15 in CLPTM1L, apart from 15q25 
and 6p21. Locus 5p15 is reported as cancer-susceptible 
and supported by a GWAS study with a larger 
population size than that of prior studies.5 

Three lung cancer-susceptible loci were identified 
in 2008, including 15q25, 6p21, and 5p15. 15q25 locus 
is linked with smoking habits, the risk allele is 
correlated with high tobacco consumption. Conversely, 
the 5p15 and 6p21 loci are not associated with smoking 
behavior. It is also reported that a DNA variant in 5p15 
is linked with a subtype of histological lung cancer and a 
high frequency of risk allele on a type of 
adenocarcinoma. GWAS meta-analysis in 2010 
confirmed that lung cancer locus at 6p21 is strongly 
associated with squamous cell carcinoma.5  

Another GWAS meta-analysis in 2014 involved 
the 1,000 genomes project and tested rare SNPs, which 
were ignored in previous studies.5 A rare genetic variant 
was linked with squamous cell carcinoma at the BRCA2 
gene of 13q13.1 and CHEK2 of 22q12.1. 3q28 locus 
was associated with lung adenocarcinoma found in the 
Asian population. A recent GWAS on lung cancer of 
European descent population involved 29,266 cases and 
56,450 controls.5 The GWAS emphasized genetic 
heterogeneity in all subtypes of histological lung cancer 
and reported new loci of lung cancer, including 1p31.1, 
6q27, 8p21.1, and 15q21.1, and adenocarcinoma, 
including 8p12, 10q24.3, 11q23.3, and 20q13.33. The 
lung cancer locus previously reported is highly specific 
to squamous cell carcinoma in this study, including 
6p21.33, 12p13.33, and 22q12.1.5  

Genetic heterogeneity in lung cancer 
susceptibility is observed among European and Asian 
populations. The variant with the highest susceptibility 
to lung cancer at the 15q25 locus has the lowest allele 
frequency among the Asian population. Furthermore, the 
6p21 variant found in Europe is not polymorphic in 
Asia. Therefore, conducting GWAS on the Asian 
population is necessary. GWAS of non-small cell 
carcinoma lung cancer (NSCLC) in the Korean 
population reported a new locus at the 3q29 
chromosome.5 The study confirmed the susceptibility of 
the 5p15 locus of Koreans. Two susceptible loci were 
identified in the Japanese and Korean populations, 
confirming a new locus of 3q28. 5p15 and 3q28 locus 
are also confirmed by GWAS involving the Han in 
China.5 Furthermore, two new loci at 13q12 and 12q12 
were also identified. The same GWAS involving a large 
sample identified five new lung cancer loci: 10p14, 
5q32, 20q13, 5q31.1, and 1p36.32. A recent GWAS 
addressing squamous cell carcinoma in the Han 

population reported a new locus at 12q23.1.5 Rare 
variations at 6p21.33, 20q11.21, and 6p22.2 were also 
identified by applying an exome genotype chip. 5p15, 
3q28, and 6p21 loci association with adenocarcinoma 
were also confirmed but not for 13q12.12 and 22q12.2 
loci.5 

Another established role of GWAS in lung cancer 
is determining groups of patients who respond to 
therapies and the susceptibility to side effects of 
medications. In the case of determining groups 
responding to treatment, Chang (2017) reported that 
GWAS identified SNPs at 4q12, which was linked with 
progression-free survival in patients with lung 
adenocarcinoma and undergoing first-line therapy with 
epidermal growth factor receptor tyrosine kinase 
inhibitor (EGFR-TKI).17 Another GWAS project by Li, 
et al. (2021) from Harbin Medical University in China, 
which applied a drug-gene interaction database, 
suggested that the SNPs variant of rs191188930 was 
correlated with the cardiotoxic effect of TKI types, such 
as sunitinib, pazopanib, sorafenib, dasatinib, and 
nilotinib.18  

A study by Xu, et al. (2020) revealed that 
deletion of exon 19 EGFR in NSCLC is linked with TKI 
therapy sensitivity.19 The study also revealed that 50% 
of EGFR exon 19 deletion occurred at the S752 locus, 
followed by 21% at the A750 and T751 loci, and 2.6% 
at the L747, E749, and p753 locus.19 In conclusion, the 
study approved TKI therapy as first-line therapy for the 
advanced NSCLC stage.19 Proper detection methods for 
medication sensitivity are integral to treating the 
advanced stage, suggesting the importance of mutation 
tests on the locus linked with EGFR exon 19 deletions.19  
  
Role of GWAS in asthma 

Since the first GWAS of asthma, which identified 
a variant at the 17q21 locus and its correlation with 
expression of the orosomucoid-like3 (ORMDL3) gene, 
the locus has become the primary focus of studies. The 
region possesses haploblock, a genomic sequence with 
high LD and SNP-dense with overlapping of at least 
four genes, including IKAROS family zinc finger 3 
(IKZF3), zona pellucida binding protein 2 (ZPBP2), 
gasdermins B (GSDMB), and ORMDL3. The locus has 
been extended to incorporate the core region involving 
post-GPI attachment to proteins 3 (PGAP3) and erb-b2 
receptor tyrosine kinase 2 (ERBB2) at the proximal end 
and gasdermins A (GSDMA) at distal ends, which may 
represent independent loci for asthma. Moffatt, et al. 
from the GABRIEL Consortium Project funded by the 
European Commission, as cited by Kim, et al. (2019), 
analyzed a subgroup of childhood-onset asthma and 
reported a specific association between the region, 
although the study also includes a group of individuals 
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with late-onset asthma to be analyzed in a meta-analysis 
based on asthma GWAS consortium.7 

Meta-analysis of the transnational asthma genetic 
consortium GWAS also revealed that the 17q12-21 
locus centered in ORMDL3/GSDMB is specifically 
linked with early-onset asthma.7 The meta-analysis 
concluded that asthma-related signals adjacent to 
PGAP3/ERBB2 and ORMDL3/GSDMB might affect 
the risk for asthma through different gene expressions. 
Notably, the genotype effect of the locus on risk and 
protection of asthma has been reported to be altered by 
early exposure to tobacco, smoking environment, and 
rhinovirus within the first three years of life. SNPs at the 
locus are associated with childhood-onset asthma in 
European, Asian, and Latin American populations.7  

A study conducted by Stein, as cited by Kim, et 
al. (2019), also revealed that SNPs at 17q12-21 were 
correlated with expression-quantitative trait loci (eQTL) 
asthma in GSDMA, ORMDL3, GSDMB, and PGAP3 
within immune and lung cells.7 However, the role of the 
17q12-21 gene in asthma pathogenesis remains 
underexplored. The limitation of GWAS is identifying 
SNPs without providing information about affected 
genes or causal SNPs. Consequentially, almost every 
GWAS reported proximate gene as a potential asthma 
gene, yet not every SNP affects the function or closest 
gene expression despite SNPs residing within the gene. 
A study by Luo, et al., as cited by Kim, et al. (2019), 
combined results of asthma GWAS and available eQTL 
data of epithelial cells in small and large human 
airways.7 The study revealed that the GWAS of asthma 
attacks was enriched due to eQTL of airway epithelial 
cells, and the gene regulated by asthma GWAS locus in 
the epithelium was enriched in the immune response.7  
 
Role of GWAS in COPD 

A recent study addressing COPD conducted by 
Moll, et al. (2020) involving 257,811 individuals from 
various databases, including the International Cancer 
Genome Consortium and United Kingdom (UK) 
Biobank, succeeded in identifying 82 loci.6 Thirty-five 
new loci were identified. Considering the significant 
correlation between lung function test and COPD, the 
authors examined the association between all variants in 
each locus and forced expiratory volume in the first 
second (FEV1) or VEP1/forced vital capacity (FVC) 
among 79,055 individuals and reported 13 loci, 
including C1orf87, DENND2D, DDX1, SLMAP, BTC, 
FGF18, CITED2, ITGB8, STN1, ARNTL, SERP2, 
DTWD1, and ADAMTSL3, with significant correlation 
(p < 0.05).6 

The authors also recognized that none of the 35 
new loci were significantly associated with tobacco 
consumption and asthma history.6 The study also 

described up to 7.0% of phenotypic variants of COPD 
out of 82 significantly associated genome variants.6 
Using 10% data on COPD prevalence, the authors 
revealed a 48% increase in COPD phenotypic variant 
described by genetic locus.6 In contrast, there is only a 
4.7% increase in 22 loci reported in previous COPD 
GWAS.6  

Through GWAS, Moll, et al. (2020) also 
attempted to identify medication targets for genetic and 
genome-wide levels.6 Of 472 potential genes, 59 were 
the target for at least one established or in-development 
COPD medication type. New loci that became the target 
of COPD medication and lung function included 
ABHD6, CDKL2, GSTO2, KCNC4, PDHB, SLK, and 
TRPM7. The authors also managed to identify reusable 
medications for COPD through transcriptome-wide 
associations and drug-induced gene expression.6 

Aside from determining the responsible locus for 
COPD and its treatment, GWAS may also be applied for 
diagnostic scoring, such as PRS. PRS could predict 
disease risk by using summary statistics of GWAS to 
determine high-risk individuals requiring immediate 
intervention. Figure 3 describes the steps for performing 
PRS.4  

The first step is to consider the summary statistic 
of GWAS and recognize each effect of SNPs on the 
predicted phenotype. The second step is to compare 
individual genotypes. The previous figure shows the 
genotype data of 4 SNPs in four individuals. The third 
step is calculating the PRS for every individual and 
combining the effect size of all risk alleles. The fourth 
step is to perform linear regression analysis on 
calculated PRS to estimate its effect.8 

Concerning COPD GWAS, Moll, et al. (2020) 
estimated the PRS of COPD by using GWAS of lung 
function (FEV1 or FEV1/FVC) of UK Biobank and 
SpiroMeta data.6 The authors examined the PRS in nine 
multiethnic cohorts to identify the association between 
the score and moderate to severe COPD, described as 
FEV1/FVC <0.7 and FEV1 <80% of the prediction 
score.6 The association was examined by a logistic 
regression model, which was adjusted to age, gender, 
height, Brinkmann index, and the main component of 
the hereditary gene. The study also assessed computed 
tomography (CT) scan phenotype, which reflected 
pathological parenchyma and airway, including patterns 
of reduced lung size.6 

Moll, et al. (2020) revealed the formula of 
PRSCombination = 0.43847 × PRSVEP1 + 0.58833 × 
PRSVEP1/KVP.6 This risk scoring has an odds ratio (OR) of 
1.81 [95% CI 1.74–1.88] for the European population 
and OR of 1.42 [95%CI 1.34–1.51] for the non-
European population. This PRS is superior to the 
previous genetic scoring risk and, when combined with 
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clinical data, including age, gender, and Brinkmann 
index, can predict COPD better than the old model, with 
an area under the curve of 0.80 [0.79–0.81] vs 0.76 
[0.75–0.76], respectively. The authors also confirmed 

that PRS was linked with CT scan phenotype, qualitative 
and quantitative emphysema size, and reduced lung size 
patterns.6 

 
Figure 3. Steps for calculating PRS8 

 

LIMITATION OF GWAS 
The limitation of GWAS is its weak statistical 

power due to the simplicity of effect size. Several 
studies are combined in a meta-analysis to overcome 
this shortcoming. Meta-analysis improves the power to 
detect association signals and reduce false positives by 
increasing sample size and surveying the number of 
variants in every genome. A major challenge in GWAS 
interpretation  lies  in  several  variants  not  replicated in 

studies, reflecting the complexity and recognizable 
heterogeneity in the observed diseases. Furthermore, 
deciding the functional relevance of GWAS results 
remains challenging since most risk variants are introns. 
Therefore, integrating GWAS data with additional 
relevant biological information is pivotal to describing 
the phenomenon and biological intervention that 
connects genetic variation and phenotype traits.8,20  
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ROLE OF GWAS IN THE FUTURE  

GWAS addresses genetic differences among 
individuals’ genomes to identify the relationship 
between genetic code/genotype and its expression in 
individual/phenotype. The method requires several 
genetic variants from the genomes of many individuals, 
these  are  examined  to  identify  their  association.  The  

 

method demands an understanding of gene inheritance 
and statistics since it involves seeking patterns in a large 
amount  of  data  that  requires  proper  interpretation  by 
researchers to obtain beneficial results, especially in 
improving the diagnostic accuracy of various diseases 
and their treatment tailored for each individual through 
genetic information.20,21  

 

 
Figure 4. Challenges in interpretations of GWAS association. From top: Manhattan plot describes the link between 

genetic variants and certain traits, disease at the genomic level (left panel), and locus (right panel). The variants above the dotted 
line represent all significant associations across the genome. The panel below describes the major challenges in interpreting GWAS 

association: High LD across variants (shaded in red), level of regulatory activity variable in all types of cells (different peaks 
represent various levels of chromatin activity), and several genes in related locus.20 

 
SUMMARY 
 

A major challenge in bioinformatics, as described 
in Figure 4, is obtaining valuable or relevant knowledge 
from millions of data. GWAS method facilitates finding 
new molecular biomarkers, which assists in early 
disease detection and diagnosis, leading to highly 
selective and effective prevention and treatment. In the 
context of treatment, GWAS can predict medication 
effects in terms of efficacy and safety (potential side 
effects, especially the harmful ones) that are linked to 
the genetic variability of each individual. 
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