

In-Silico Study: Potential Inhibitor of Cyclin-Dependent Kinase 6 (CDK6) from Natural Plant Compounds for Melanoma Treatment

Putri Aliya Ahadini¹⁰, Adhyatma Ismu Reihan¹⁰, Muhamad Bagus Wira Utama¹⁰, Siti Khaerunnisa²⁰, Fadilah Fadilah³⁰

¹Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
²Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
³Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.

ABSTRACT

Introduction: Melanoma is the most aggressive and dangerous type of skin cancer. It usually occurs in the skin because melanocytes originate from the neural crest cells that migrate. A previous study stated misregulation of cyclin-dependent kinase 6 (CDK6) had a role in melanoma progression. This study aimed to identify the potential natural compound targeting and modulating the CDK6.

Methods: This was an investigative study using in-silico docking analysis to search for compatible ligands and potential inhibitors to CDK6 protein. This study screened 46 natural compounds based on the drug-likeliness based on Lipinski's rules of five and used PyRx (AutoDock Vina) software for the initial screening. 10 compounds with the highest binding energy underwent docking simulation using Molecular Operating Environment (MOE) software.

Results: Chlorogenic acid, guattegaumerine, luteolin, and acronycine were potential natural compounds in plants as CDK6 inhibitors.

Conclusion: This study found that chlorogenic acid was the most potential to be an inhibitor of CDK6 compared to other compounds screened.

ARTICLEINFO

Article history:

Received 2 June 2022

Received in revised form 28 June 2022

Accepted 28 July 2022

Available online 10 August 2022

Keywords:

CDK6, In-silico, Life expectancy, Melanoma, Natural plant compounds.

* Correspondence: st.khaerunnisa@fk.unair.ac.id

JUXTA: Jurnal Ilmiah Mahasiswa Kedokteran Universitas Airlangga p-ISSN: 1907-3623; e-ISSN: 2684-9453 DOI: 10.20473/juxta.V13I12022.93-99 Open access under Creative Commons Attribution-ShareAlike 4.0 International License (CC-BY-SA)

Introduction

Melanoma is a malignant tumor originating from melanocytes and is also a rare malignancy.¹ It usually occurs in the skin because melanocytes originate from the neural crest cells migrate. The incidence of melanoma has steadily increased worldwide over the last few decades. Although the prevalence is only 4% of all cases of skin cancer, this disease is very deadly and accounts for 75% of deaths.¹

The increasing number of cases, the highest contributor to skin cancer deaths, poor prognosis, and limited treatment make new therapy necessary for this disease.² Various treatments are used to treat melanoma. Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted therapy. The choice of treatment depends on the patient's health status, stage, and tumor location. Therapeutic efficacy may decrease as resistance develops.³ Despite advances in adjuvant therapy, the 5-year relative survival is only 15.3% compared to other malignancies, melanomas refractory to chemotherapy, and emerging immunotherapy.⁴ This underlies the need for the development of melanoma treatment.

Cyclin-dependent kinase 6 (CDK6) cooperates with cyclin D in controlling cell cycle progression through the phosphorylation of Retinoblastoma protein (Rb).⁵ The role of CDK6 is to promote development through cell cycle overload, increase cell proliferation, cell migration, and angiogenesis of cancer.⁶ Dysregulation of CDK6 pathways is found in up to 90% of melanoma.⁷ UV light promotes CDK6 amplification, then induces UV-lesion repairment and melanomagenesis.⁷ Knock-down of CDK6 has shown to reduce the angiogenic potential of the tumor cells, decrease cell proliferation, reduce cell proliferation migration, and also decrease tumor growth in melanoma.⁵ The previous explanation shows that CDK6 can be a therapeutic target in treating melanoma. Flavonoid and phenolic compounds on plants are known to have anticancer effects.^{5.8} Therefore, in this study, the in-silico

Table 1. Protein target, native ligands, active site

analysis aimed to find the potential plant-based compound targeting CDK6 for melanoma treatment. Hopefully, this study could be used as the basis for future in-vivo and invitro studies about melanoma treatment targeting CDK6.

Methods

This was an investigative study using in-silico docking analysis to search for compatible ligands and potential inhibitors to CDK6 protein. This study searched the herbal compound with potential anti-melanoma and anticancer in the skin which acts as the ligand for the study from Dr. Duke's Phytochemical and Ethnobotanical Databases.⁹ A total of 46 compounds were listed.

The structure of each available natural compound was downloaded from PubChem in .sdf format.¹⁰ This study also retrieved the canonical Simplified Molecular Input Line Entry System (SMILES) from PubChem. It was used to examine the drug-likeness criteria by Lipinski's rule of five using the SwissADME web server.¹¹ The compound with two or more violations of Lipinski's Rule was excluded.

The molecular structure of CDK6 (PDB 3NUX) was obtained from Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank in .pdb format.¹² The active site was predicted using the Computed Atlas of Surface Topography of Proteins (CASTp).¹³ The initial screening was performed using the PyRx software (AutoDock Vina). The ligand's position on the binding site was determined by arranging the grid box sized 18.9641x15.5527x19.2737 with the center of coordinates in 14.7076x27.9003x8.6742. Then, 10 compounds with the highest binding affinity will be docked using Molecular Operating Environment (MOE) software. Ligand and protein preparation were prepared beforehand.

Docking calculation was performed by the Lamarckian algorithm in MOE software. Each ligand was docked into protein CDK6 at the pocket site of the protein. Molecular docking was performed using Triangle Matcher for Placement and Forcefield for Refinement. The parameter used for pose generation was the London dG score. For each ligand, the top poses were selected from 100 poses

Protein Target	PDB ID	Native Ligand	Active Site
CDK6	3NUX	3NV	ILE19, GLY20, GLU21, GLY22, ALA23, GLY25,
CDK6 (monomeric) in		4-[5-chloro-3-(1-methylethyl)-1H-pyrazol-4-yl]-	LYS26, VAL27, ALA41, LYS43, VAL45, ARG46,
complex with inhibitor		N-(5-piperazin-1-ylpyridin-2-yl)pyrimidin-2-	PRO55, THR58, GLU61, LEU65, LEU68, GLU69,
		amine	VAL76, VAL77, LEU79, LYS93, LEU94, PHE98,
~~~~			GLU99, HIS100, VAL101, ASP102, ASP104,
N 5 8			PHE135, LEU136, VAL141, VAL142, HIS 143,
STA A			ARG144, ASP145, LYS147, GLN149, ASN150,
- Sol		HN	LEU152, ALA162, ASP163, PHE164, GLY165,
			LEU166, ALA167, VAL181, THR182, ARG186
101000		U N N	
1 Thomas		NNH	
~ •		HN	
		C19 H23 CI N8	

#### Results

<u>Table 1</u> shows the structures and amino acids found in the active site pockets of 3NUX. This protein was found in humans, structured and repositioned in PDB, and could be accessed by the public since December 2010.

<u>Table 2</u> shows some ligands and several drug candidates with the lowest binding affinity through PyRx

screening and met the requirements of Lipinski's rule of five. <u>Table 3</u> shows molecular docking analysis results for several compounds against 3NUX, including Gibbs Energy, affinity, H donor/H acceptor interaction, and the amino acid involved. Figure 1 shows the 3D visualization of the 3 best potential ligands on CDK6 pocket site.

Liningkile Dule of Live						
Table 2. Properties of CDK6 potential inhibitor candidate						

No	Compound			
NO.	Compound	Properties	Value	
1 10-H	10-Hydroxycamptothecin (CID	Molecular weight (<500 Da)	364.35	
	97226)	LogP (<5)	1.11	
	·	H-bond donor (5)	2	
		H-bond acceptor (<10)	6	
		Violation	0	
2	Camptothecin (CID 24360)	Molecular weight (<500 Da)	348.35	
		LogP (<5)	1.64	
		H-bond donor (5)	1	
	020111614204	H-bond acceptor (<10)	5	
	—	Violation	0	
3	Solasodine (CID 5280445)	Molecular weight (<500 Da)	413.64	
U U	(	LogP (<5)	4.94	
		H-bond donor (5)	2	
		H-bond acceptor (<10)	3	
		Violation	1	
4	Luteolin (CID 5281807)	Molecular weight (<500 Da)	286.24	
•			-0.03	
	C H C	H-bond donor (5)	4	
	$C_{15}\Pi_{10}O_{6}$	H-bond acceptor (<10)	6	
		Violation	0	
5	Acronycine (CID 345512)	Molecular weight (<500 Da)	321.37	
Ũ			2.50	
	<u> </u>	H-bond donor (5)	0	
	C20H19NO3	H-bond acceptor (<10)	3	
		Violation	0	
6	Guattegaumerine (CID 159911)	Molecular weight (<500 Da)	596 71	
U			3 11	
		H-bond donor (5)	3	
	$C_{36}H_{40}N_2O_6$	$H_{-bond}$ acceptor (<10)	8	
	—	Violations	1	
7	Quercetin (CID 5280343)	Molecular weight (<500 Da)	302.24	
1				
		H-bond dopor (5)	-0.30	
	C15H10O7	$H_{-bond}$ acceptor (<10)	7	
		Violation	, ,	
8	Apigenin (CID 5280443)	Molecular weight (<500 Da)	270.24	
0			0.52	
		H-bond donor (5)	3	
	$C_{15}H_{10}O_5$	H-bond acceptor (<10)	5	
	—	Violation	0	
0	Cholorogenic acid (CID 170//27)	Molecular weight (<500 Da)	35/ 31	
5				
		H bond dopor (5)	-1.05	
	C ₁₆ H ₁₈ O ₉	H-bond acceptor (<10)	<u> </u>	
		Violation	<u> </u>	
10	Ellipticipo (CID 2212)	Molocular woight (<500 Da)	246.31	
10			3 00	
	— — — — — — — — — — — — — — — — — — —	H-bond deper (5)	1	
	C17H14N2		<u> </u>	
	—	Violation	I	
		VIOIALIOTI	U	

Table 3. Molecular docking results and visualization of 5 best phytochemicals

		•	
Ligand	1DEH-Ligan	,	H-Bona
Native Ligand: 3NV	(AR)	∆G: -18.875	GLN11 (1.64), ARG44 (2.85)
(CID 49800100)		kcal/mol	
		Affinity: 6 102pKi	
		H donor/ H	
		acceptor	
		interaction: 2	
	1		
10-Hydroxy-		∆G: -18.059	VAL46 (1.66), ARG44 (3.00)
camptothecin (CID	-	kcal/mol	
97226)		Affinity: 6.812pKi	
,	(Val 6) (Lea) 94	H donor/ H	
		accontor	
	$\rightarrow$	interestion: 0	
		Interaction. 2	
	6 Arg		
Camptothecin (CID		∆G: -10.320	-
24360)	Tyr (Arg) (1) Thr)	kcal/mol	
,		Affinity: 4 901nKi	
		acceptor	
	HO N	interaction: 0	
Solasodine (CID	De la	∆G: -16.438	LYS93 (2,52)
5280445)		kcal/mol	21000 (2.02)
3200443)			
	9 ROIN	H donor/ H	
		acceptor	
		interaction: 1	
	(Tr) (Cop)		
Lutaalin (CID 5281807)	•	AC: 11 356	TVP12 (2 50 1 67) THP05 (2 00)
Luteolin (CID 5201007)		AG 11.330	1103(3.39, 1.07), 11093(2.99),
		kcai/moi	ARG44 (2,77), THR95 (2.99)
		Affinity: 7.552pKi	
		H donor/ H	
		acceptor	
		interaction: 5	
	(GR)		
	8	10.10.151	
Acronycine (CID	Cys	ΔG: -10.154	ARG44 (2.96, 2.97), 1593 (2.60)
345512)	(8)	kcal/mol	
	Thr 93	Affinity: 5.141pKi	
		H donor/ H	
	Leu M	accentor	
		interaction: 2	
		interaction: 3	
Guattegaumerine (CID		AG: -20 245	TYR13 (1.67) ARG44 (2.68)
150011)		kcal/mol	(2.00)
100011)			
		Апппту: 6.894рКі	
		H donor/ H	
	The to the second secon	acceptor	
		interaction: 2	
	(m)		
Quercetin (CID	*æ/	AG: -13 330	TYR13 (1 78) THR8/ (2 16)
52803/3		<u>kcal/mol</u>	(1.70), (1.70), (1.10)
5200345)			
		Апппту: 5.58/рКі	

Page 97





Figure 1. Conformation of chlorogenic acid (a), guattegaumerine (b), and luteolin (c) on pocket site of CDK6

# Discussion

CDK6 are cell cycle kinases that facilitate the progression of cells forming complexes with D-type cyclin. Disordered cell regulation leads to uncontrolled cell proliferation and cancer development, including melanoma.⁶ CDK6 inhibitor has a good therapeutic effect in human melanoma. This monotherapy offers a great simple benefit.⁷ Knock-down of CDK6 has shown to reduce the angiogenic potential of the tumor cells, decrease cell proliferation, reduce cell migration, and also decrease tumor growth.⁵

This study investigated 10-hydroxycamptothecin, camptothecin, solasodine, luteolin, acronycine, guattegaumerine, quercetin, apigenin, chlorogenic acid,

and ellipticine as potential inhibitors of the CDK6 protein. Those compounds can be found in various plants (Table 4). The binding energies obtained from docking 3NUX with the native ligand, 10-hydroxycamptothecin, camptothecin, solasodine, luteolin, acronycine, guattegaumerine, quercetin, apigenin, chlorogenic-acid, and ellipticine were -18.875, -18.059,-10.320, -16.438, -11.356, -10.154, -20.245, -13.330, -9.713, -28.273, and -14.085 kcal/mol, respectively (Table 3). The docking analysis showed the inhibition potential of several compounds, ranked by binding energies ( $\Delta G$ ); chlorogenic acid > guattegaumerine > 10-hydroxycamptothecin > solasodine > ellipticine > quercetin > luteolin > camptothecin > acronycine > apigenin.



Compound	Plants
10-Hydroxycamptothecin (CID 97226)	Camptotheca acuminata; families of Apocynaceae, Olacaceae, and Rubiaceae ¹⁴
Camptothecin (CID 24360)	Camptotheca acuminata; families of Apocynaceae, Olacaceae, and Rubiaceae ¹⁴
Solasodine (CID 5280445)	Solanum torvum Sw. ¹⁵
Luteolin (CID 5281807)	Apium graveolens, Petroselinum crispum, Brassica oleracea, Allium fistulosum, Daucus
	carota subsp. Sativus, Capsicum annuum group, Brassica oleracea, and
	Chrysanthemum ¹⁶
Acronycine (CID 345512)	Acronychia baueri ¹⁷
Guattegaumerine (CID 159911)	Berberis stolonifera ¹⁸
Quercetin (CID 5280343)	Citrus, Malus domestica, Rubus idaeus, Allium cepa, and Vitis vinifera ^{19,20}
Apigenin (CID 5280443)	Matricaria recutita, Citrus reticulata, Allium cepa, Apium graveolens, and Petroselinum crispum ^{20,21}
Cholorogenic acid (CID 1794427)	Salvia rosmarinus, Eugenia uniflora, Coffea, and Citrus limon ²²
Ellipticine (CID 3213)	Ochrosia vieillardii, Ochrosia acuminata, Ochrosia moorei, Strychnos dinkagei, and families of Apocynaceae ^{23,24}

Table 4. The natural compound sources

The results of docking analysis (Table 3) showed that the native ligand formed H-bonds with the 3NUX amino acid GLN11 and ARG44. The 10-Hydroxycamptothecin formed H-bonds with the 3NUX amino acids VAL46 and ARG44. Camptothecin did not have H-bonds interaction with the 3NUX amino acid. Solasodine formed H-bonds with the 3NUX amino acid LYS93. Luteolin created Hbonds with the 3NUX amino acids TYR13, ARG44, and THR95. Acronycine formed H-bonds with the 3NUX amino acids ARG44 and LYS93. Guattegaumerine formed Hbonds with the 3NUX amino acids TYR13 and ARG44. Quercetin formed H-bonds with the 3NUX amino acids TYR13 and THR84. Apigenin created H-bonds with the 3NUX amino acid LYS93. Chlorogenic acid formed Hbonds with the 3NUX amino acid GLN11, CYS15, ARG44, LYS93, and THR95. Ellipticine did not have an H-bonds interaction with the 3NUX amino acid. The high affinity of drug compounds depended on the type and amount of bonding with the active site of the protein. The 3NV native ligand had less hydrogen interaction than chlorogenic acid, luteolin, and acronycine. Chlorogenic acid on 3NUX had the most hydrogen interactions.

Based on the binding energy, chlorogenic acid and guattegaumerine had lower binding affinity than native ligands with protein 3NUX. Based on the binding energy, affinity, and hydrogen bond interaction, chlorogenic acid had promising potential to be an inhibitor of CDK6. Chlorogenic acid is a natural product that is spread in the kingdom Plantae.²² It can be found in various plants, like rosemary, cherry, coffee, and lemon (Table 4). Those plants are easily found in everyday life and in various countries.

The results of this study are in line with other studies regarding the potential of phenolic and flavonoid compounds as anticancer. Plant-derived phenolic is shown to inhibit the initiation and progression of cancers by inducing apoptosis, promoting cell survival, and inhibiting the cell cycle, invasion, metastasis, and angiogenesis.⁸ Phenolic acid has some toxicity effects that are easy to manage, making it potential as a therapeutic option for human by paying attention to certain things such as dose.⁸

Flavonoids modulate Reactive Oxygen Species (ROS) scavenging enzyme activities, arrest the cell cycle, induce apoptosis, autophagy, and suppress cancer cell proliferation and invasiveness.¹⁴ These compounds are found in a wide variety of fruits, vegetables, beverages, and human foods, hence they do not have dangerous side effects.²¹ Flavonoids are also able to bind on the CDK6/cyclin D complex via hydrogen and van der Walls bonds on amino acids, allowing it to be an inhibitor for this protein.²⁵ Therefore, chlorogenic acid as a phenolic compound and guattegaumerine, luteolin, and acronycine as flavonoids were the most recommended natural compounds found in plants as potential inhibitors of plant CDK6 which should be explored in future studies.

#### Conclusion

In conclusion, this study docked the best 10 compounds with CDK6. Chlorogenic acid was the most suitable ligand for this protein. It had the lowest  $\Delta G$  binding energy, better affinity, and most hydrogen bonding interaction. Therefore, it could be the most suitable inhibitor on CDK6. Overall, chlorogenic acid, guattegaumerine, luteolin, and acronycine were the most recommended natural compounds found in plants as potential inhibitors of CDK6 for melanoma treatment. Hopefully, this study could be used as the basis for both in-vivo and in-vitro studies, hence new herbal plant-based therapies can be found for treating melanoma.

# Acknowledgments

The authors would like to acknowledge the support from Faculty of Medicine Universitas Airlangga and Universitas Indonesia that have supported and facilitated this study.

#### **Conflict of Interest**

The author declared there is no conflict of interest.

#### References

 Davis LE, Shalin SC, Tackett AJ. Current State of Melanoma Diagnosis and Treatment. *Cancer Biol Ther* 2019; 20: 1366–1379. [PubMed] [CrossRef]

- Avram AM, Simionescu OD, Costache M, et al. Improving Melanoma Path Reports: The Importance of Histopathological Parameters in Diagnosis of Cutaneous Melanoma. *Maedica (Buchar)* 2015; 10: 226–230. [PubMed]
- Domingues B, Lopes J, Soares P, *et al.* Melanoma Treatment in Review. *ImmunoTargets Ther* 2018; Volume 7: 35–49. [PubMed] [CrossRef]
- Huff LS, Chang CA, Thomas JF, et al. Defining an Acceptable Period of Time from Melanoma Biopsy to Excision. *Dermatology Reports* 2012; 4: 2. [PubMed] [CrossRef]
- Kollmann K, Briand C, Bellutti F, *et al.* The Interplay of CDK4 and CDK6 in Melanoma. *Oncotarget* 2019; 10: 1346–1359. [PubMed] [CrossRef]
- Nebenfuehr S, Kollmann K, Sexl V. The Role of CDK6 in Cancer. Int J Cancer 2020; 147: 2988–2995. [PubMed] [CrossRef]
- Garutti M, Targato G, Buriolla S, *et al.* CDK4/6 Inhibitors in Melanoma: A Comprehensive Review. *Cells* 2021; 10: 1334. [PubMed] [CrossRef]
- Anantharaju PG, Gowda PC, Vimalambike MG, et al. An Overview on the Role of Dietary Phenolics for the Treatment of Cancers. Nutr J 2016; 15: 99. [CrossRef]
- Agriculture USDO. Dr. Duke's Phytochemical and Ethnobotanical Databases. USDA, https://phytochem.nal.usda.gov/phytochem/search (2021).
- 10. Informayion NC for B. PubChem. *National Library of Medicine*,

https://pubchemdocs.ncbi.nlm.nih.gov/about.

- 11. Swiss Institute of Bioinformatics. SwissADME. S/B, http://www.swissadme.ch/ (2022).
- RSCB PDB. A Structural View of Biology. National Science Foundation, https://www.rcsb.org/.
- Tian W, Chen C, Lei X, *et al.* CASTp 3.0: Computed Atlas of Surface Topography of Proteins. *Nucleic Acids Res* 2018; 46: W363–W367. [PubMed] [CrossRef]
- Kopustinskiene DM, Jakstas V, Savickas A, et al. Flavonoids as Anticancer Agents. *Nutrients* 2020; 12: 457. [PubMed] [CrossRef]
- Moreira C., Lima S., Esquibel M., et al. Solasodine Accumulation in Regenerated Plants of Solanum torvum Sw. Rev Bras Plantas Med 2010; 12: 73–79. [CrossRef]

- Lin Y, Shi R, Wang X, et al. Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Curr Cancer Drug Targets 2008; 8: 634–646. [PubMed] [CrossRef]
- Beck JR, Kwok R, Booher RN, *et al.* Synthesis of Acronycine. *J Am Chem Soc* 1968; 90: 4706–4710. [PubMed] [CrossRef]
- Kraus PF, Kutchan TM. Molecular Cloning and Heterologous Expression of a cDNA Encoding Berbamunine Synthase, a C--O Phenol-Coupling Cytochrome P450 from the Higher Plant Berberis Stolonifera. *Proc Natl Acad Sci* 1995; 92: 2071–2075. [CrossRef]
- Anand David A, Arulmoli R, Parasuraman S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. *Pharmacogn Rev* 2016; 10: 84. [WebPage]
- Shankar GM, Antony J, Anto RJ. Quercetin and Tryptanthrin: Two Broad Spectrum Anticancer Agents for Future Chemotherapeutic Interventions: 43–72. [PubMed] [CrossRef]
- Hostetler GL, Ralston RA, Schwartz SJ. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. *Adv Nutr An Int Rev J* 2017; 8: 423–435. [PubMed] [CrossRef]
- Moreira EA, Pilon AC, Andrade LE, et al. New Perspectives on Chlorogenic Acid Accumulation in Harvested Leaf Tissue: Impact on Traditional Medicine Preparations. ACS Omega 2018; 3: 18380–18386. [CrossRef]
- Costa de Oliveira R, Soares Pontes G, Kostyuk A, et al. Anticancer and Immunomodulatory Activities of a Novel Water-Soluble Derivative of Ellipticine. *Molecules* 2020; 25: 2130. [PubMed] [CrossRef]
- 24. Stiborová M, Černá V, Moserová M, et al. The Anticancer Drug Ellipticine Activated with Cytochrome P450 Mediates DNA Damage Determining Its Pharmacological Efficiencies: Studies with Rats, Hepatic Cytochrome P450 Reductase Null (HRNTM) Mice and Pure Enzymes. *Int J Mol Sci* 2014; 16: 284– 306. [PubMed] [CrossRef]
- Zhang J, Zhang L, Xu Y, *et al.* Deciphering the Binding Behavior of Flavonoids to the Cyclin Dependent Kinase 6/Cyclin D Complex. *PLoS One* 2018; 13: e0196651. [PubMed] [CrossRef]