CORRELATION BETWEEN SGOT AND SGPT LEVELS WITH POSITIVE HBSAG LEVELS

KORELASI ANTARA SGOT DAN SGPT DENGAN KADAR HBSAG POSITIF

Nisa’ur Rosyidah 1*, Erlinda Widyastuti 1*, Annisa Auliya Rahman 2, Nur Septia Handayani 1*, Belgis 1*

1 Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Indonesia
2 Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Indonesia

ABSTRACT

Background: Serum Glutamic Oxaloacetate Transaminase (SGOT) and Serum Glutamic Pyruvic Transaminase (SGPT) are transaminase enzymes used to determine liver damage. The increase in both enzymes can indicate the level of liver cell damage. Hepatitis B surface antigen (HBsAg) is an antigen that can indicate an acute infection or a chronic carrier. Purpose: This study aims to determine the correlation between SGOT and SGPT levels with positive HBsAg levels. Method: It is a cross-sectional study using medical records from patients with positive HBsAg who performed SGOT and SGPT examinations at the Haji Public Hospital, East Java Province, in 2021. The correlation analysis used in this study is Kendall’s tau correlation because the data contains outliers and is not normally distributed. Result: Based on the results, it is known that there is no significant correlation between SGOT and SGPT levels with positive HBsAg levels. The correlation coefficient for each is 0.110 and 0.144. Conclusion: It can happen because HBsAg levels vary between the disease's different phases, the patient’s characteristics, and the levels of SGOT and SGPT.

ARTICLE INFO

Received 31 December 2022
Revised 10 January 2023
Accepted 21 July 2023
Available Online 31 July 2024

Correspondence: Erlinda Widyastuti
E-mail: erlinda.widyastuti@vokasi.unair.ac.id

Keywords: HBsAg, Hepatitis B, SGOT, SGPT

ABSTRAK

Latar belakang: Serum Glutamic Oxaloacetate Transaminase (SGOT) dan Serum Glutamic Pyruvic Transaminase (SGPT) merupakan enzim transaminase yang digunakan untuk mengetahui kerusakan hati. Peningkatan kedua enzim tersebut dapat menunjukkan tingkat kerusakan sel hati. Antigen permukaan hepatitis B (HBsAg) adalah antigen yang dapat menunjukkan infeksi akut atau pembawa kronis. Tujuan: Penelitian ini bertujuan untuk mengetahui hubungan antara kadar SGOT dan SGPT dengan kadar HBsAg positif. Metode: Penelitian cross-sectional menggunakan rekam medis dari pasien dengan HBsAg positif yang menjalani pemeriksaan SGOT dan SGPT di RSU Haji Provinsi Jawa Timur tahun 2021. Analisis korelasi yang digunakan dalam penelitian ini adalah korelasi Kendall’s tau karena data mengandung outlier dan tidak berdistribusi normal. Hasil: Berdasarkan hasil tersebut diketahui bahwa tidak terdapat hubungan yang bermakna antara kadar SGOT dan SGPT dengan kadar HBsAg positif. Koefisien korelasi masing-masing adalah 0,110 dan 0,144. Kesimpulan: Hal ini dapat terjadi karena kadar HBsAg bervariasi antara fase penyakit yang berbeda, karakteristik pasien, dan kadar SGOT dan SGPT.

Kata kunci: HBsAg, Hepatitis B, SGOT, SGPT
INTRODUCTION

Hepatitis B is a viral infection caused by the hepatitis B virus and attacks the liver, which can be an acute or chronic infection of the hepatitis B virus (Bagus Eka Utama Wijaya, 2020; Ditjen Bina Kefarmasian & Alat Kesehatan, 2005; Gan et al., 2022). Most hepatitis B infections progress to cirrhosis and hepatocellular carcinoma. In 2019, it was estimated that 296 million people worldwide were infected with the hepatitis B virus, which caused the death of 820,000 people, with 1.5 million new infections yearly (Ditjen Bina Kefarmasian & Alat Kesehatan, 2005; Gan et al., 2022; Jaroszewicz et al., 2010; Juspar, 2017). Hepatitis B Surface Antigen (HBsAg) is one of the serological markers detected positively since the hepatitis B virus entered within 2 - 6 weeks and will be detected within a few weeks to months in acute hepatitis B (Gan et al., 2022; Hilman et al., 2002; Jaroszewicz et al., 2010). According to Baig (2009), Dooley et al. (2011), Ruggieri et al. (2018), HBsAg is closely related to pre-cancerous dysplasia. Hence, it is possible that the higher the HBsAg, the more severe the liver damage.

Acute hepatitis B consists of 4 phases: incubation, prodromal, icterus, and healing. The incubation phase ranges from 1 - 6 months, from the time of virus transmission to the onset of symptoms. The prodromal phase is between the onset of the first symptoms and symptoms of jaundice. The icterus phase lasts 1 - 6 weeks and is characterized by the yellowing of the eye’s sclera. The healing phase is the disappearance of the symptoms of jaundice and other complaints. Chronic hepatitis B persists for more than six months from the onset of symptoms. It consists of 3 phases: immunotolerance, immunoreactive, and residual. The immunotolerance phase is a replicative phase with a high HBsAg level. The immunoreactive phase is a necroinflammatory process characterized by an increase in SGPT. The residual phase occurs when the body destroys the virus, causing the rupture of infected liver cells (Chen et al., 2019; Rustanti, 2018).

People with hepatitis B will generally also perform laboratory tests related to Serum Glutamic Oxaloacetate Transaminase (SGOT) and Serum Glutamic Pyruvic Transaminase (SGPT), which is an indication of a disturbance in the liver cells. Both are transaminase enzymes used to determine liver damage (Astiti et al., 2016; Gan et al., 2022; Maulidia, 2019; Oktaviani, 2012; Rahayu et al., 2018; Vaillant, 2021). The higher the increase in SGOT and SGPT enzymes, the more severe liver cell damage (Gan et al., 2022; Pane and Khairunnisa, 2016; Rahayu et al., 2018). The SGOT enzyme is found in the cytoplasm and mitochondria of hepatocyte cells. Hence, this enzyme is less specific for determining the level of liver cell damage when compared to the SGPT enzyme, which is only located in the cytoplasm of hepatocyte cells (Pradnyawati, 2018; Rahayu et al., 2018). Increased SGOT and SGPT can be caused by liver cell damage, hepatitis, metastatic carcinoma, heart failure, and granulomatous caused by alcohol consumption (Fanani, 2017; Nafi’ah Rahma Maulidia et al., 2020). The SGPT enzyme increases significantly when liver disease occurs. Thus, it can be used to monitor the course of hepatitis and cirrhosis. SGOT highly affects organ damage such as heart, liver, muscle, skeletal, and kidney. Although the increase in SGOT is not specific to liver disease, SGOT may be elevated in cirrhosis, hepatitis, and liver cancer (Difa, 2020; Esmaeelzadeh et al., 2017; Gan et al., 2022; Nafi’ah Rahma Maulidia et al., 2020; Oktaviani, 2012; Rahayu et al., 2018). The increase in SGOT and SGPT in acute hepatitis B occurs at the beginning of the icteric phase, up to ten times the normal value, and one hundred times in severe conditions. There was a decrease of 50% in the second week since the icteric phase, but in the healing phase, the transaminase values were not normal and would be normal 2 - 3 months after infection (Wahyudi and Saturti, 2017).

According to Difa (2020), Esmaeelzadeh et al. (2017), Maulidia (2019), Oktaviani (2012), Rahayu et al. (2018), HBsAg-positive patients tend to have SGOT and SGPT levels above normal (Dwi Indah V., 2011; Esmaeelzadeh et al., 2017; Gan et al., 2022). Also, there was a relationship between increased SGPT levels and HBsAg levels in hepatitis B patients. Hence, this study aims to determine the correlation between SGOT and SGPT levels with positive HBsAg levels.

MATERIAL AND METHOD

This study used data obtained from the medical records of patients with positive HBsAg who performed SGOT and SGPT examinations simultaneously at the Haji Hospital in Surabaya, East Java Province in 2021. This hospital had approved a permission letter for data collection (070/728/102.10/2022). The data analysis used in this study is Kendall’s tau correlation.

Kendall’s tau correlation

Kendall’s tau correlation is a nonparametric correlation method that is more robust against outliers than Spearman correlation. This correlation requires that the data type used is at least ordinal. Kendall’s tau correlation coefficient can be calculated by Formula 1 (Wozniak, 1991).

\[
\tau = \frac{P - Q}{n - (n-1)/2}
\]
In (1) is the coefficient of correlation, \(P \) is the number of concordant pairs, and \(Q \) is the number of discordant pairs. The correlation coefficient has a value between -1 to +1. The closer to zero, the weaker the relationship between the two variables, and the closer to -1 or +1, the stronger the relationship. A positive correlation coefficient indicates a directly proportional relationship between the two variables, while a negative one indicates an inverse relationship between the two variables (Johnson and Bhattacharyya, 2009).

RESULT

The data of HBsAg-positive patients with SGOT and SGPT levels at the Haji Hospital in Surabaya, East Java Province, in 2021 are shown in Table 1. The results showed that the highest number of HBsAg-positive patients was in the age range of 51 - 60 years old (31 people, 26.50%), while the lowest number in the age range of 71 - 80 and 81 - 90 years old was one person. This study’s lowest and highest ages were 18 and 85, respectively. Based on gender, males were more dominant (60 people, 51.30%) than females (57 people, 48.70%). SGOT examination with normal level was 91 people (77.78%), and above normal was about 26 people (22.22%). On the SGPT examination, there were 92 people with normal levels (80.34%) and 25 people above normal (19.66%). Before conducting a correlation analysis, first, a descriptive analysis was conducted to determine the characteristics of the data.

Table 1 shows that HBsAg levels have a positive correlation coefficient with SGOT and SGPT levels, which are 0.110 and 0.144, respectively. It means that SGOT and SGPT levels also tend to increase when HBsAg levels increase, and vice versa. However, based on statistical tests, HBsAg levels did not significantly correlate with SGOT and SGPT levels. The \(p \)-value indicates this for both correlation coefficients more than \(\alpha \) (0.05).

Table 1. Characteristics of HBsAg-positive patients with *Serum Glutamic Oxaloacetate Transaminase* (SGOT) and *Serum Glutamic Pyruvic Transaminase* (SGPT) levels at the Haji Hospital in Surabaya

| Characteristic | HBsAg-positive patients (%) | SGOT level | | | SGPT level | | | |
|---|---|---|---|---|---|---|---|
| | | Normal (%) | Above normal (%) | Normal (%) | Above normal (%) | Normal (%) | Above normal (%) | |
| **Sex** | | | | | | | | |
| Female | 57 (48.70) | 46 (80.70) | 11 (19.30) | 49 (85.96) | 8 (14.04) | | |
| Male | 60 (51.30) | 45 (75.00) | 15 (25.00) | 43 (71.67) | 17 (28.33) | | |
| **Age (years)** | | | | | | | | |
| 10 - 20 | 2 (1.71) | 2 (100.00) | - | 1 (50.00) | 1 (50.00) | | |
| 21 - 30 | 17 (14.53) | 16 (94.12) | 1 (5.88) | 13 (76.47) | 4 (23.53) | | |
| 31 - 40 | 24 (20.51) | 20 (83.33) | 4 (16.67) | 19 (79.17) | 5 (20.83) | | |
| 41 - 50 | 16 (13.68) | 9 (56.25) | 7 (43.75) | 11 (68.75) | 5 (31.25) | | |
| 51 - 60 | 31 (26.50) | 24 (77.42) | 7 (22.58) | 28 (90.32) | 3 (9.68) | | |
| 61 - 70 | 25 (21.37) | 18 (72.00) | 7 (28.00) | 18 (72.00) | 7 (28.00) | | |
| 71 - 80 | 1 (0.85) | 1 (100.00) | - | 1 (100.00) | - | | |
| 81 - 90 | 1 (0.85) | 1 (100.00) | - | 1 (100.00) | - | | |
Figure 1. Boxplot Hepatitis B surface antigen (HBsAg) levels by Serum Glutamic Oxaloacetate Transaminase (SGOT) and Serum Glutamic Pyruvic Transaminase (SGPT) levels

Figure 2. Scatterplot between Serum Glutamic Oxaloacetate Transaminase (SGOT) and Serum Glutamic Pyruvic Transaminase (SGPT) level with Hepatitis B surface antigen (HBsAg) level

Table 2. Kendall’s tau correlation

<table>
<thead>
<tr>
<th>Variable 1</th>
<th>Variable 2</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg level</td>
<td>SGOT level</td>
<td>(\tau) 0.110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{p}-value 0.161</td>
</tr>
<tr>
<td></td>
<td>SGPT level</td>
<td>(\tau) 0.144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{p}-value 0.066</td>
</tr>
</tbody>
</table>

DISCUSSION

This study used 117 data on SGOT and SGPT levels in HBsAg-positive patients at the Haji Hospital in Surabaya, East Java Province in 2021. Patient characteristics data were grouped by sex and age, as shown in Table 1. The highest number of HBsAg-positive patients were in the age 51 - 60 years old (26.50%) and male (51.30%). The results of this study showed that the largest HBsAg-positive (in the age of 51 - 60 years old) was the productive age of growing old, susceptible to hepatitis B infection due to too much activity outside. The male gender is more dominant than the female in HBsAg-positive. It might be related to drug use through used syringes and tattooing with unsterile needles.

Besides that, most males start sleeping late, while the liver detoxification process occurs in the range of 11 p.m. to 1 a.m., where this process will take place during a person’s periods of sleep. The increase in SGOT and SGPT levels in males is higher than in females due to several factors, such as lifestyle, including smoking and consuming alcohol.

Figure 1 indicates that patients with above-normal SGOT and SGPT levels tend to have higher HBsAg levels than patients with normal SGOT and SGPT levels. The results are aligned with a study conducted by Dwi Indah V. (2011), Esmaeelzadeh et al. (2017), Gan et al., (2022), which showed that there was a relationship between increased SGPT levels and HBsAg levels in hepatitis B patients. However, statistically, there will be
no difference in HBsAg levels in patients with normal or above normal SGOT and SGPT levels because the distribution of the data intersects with each other.

The relationship between two variables can be known graphically or statistically. The relationship between the two variables can be seen through a scatterplot, as shown in Figure 2. Figure 2 shows that there are levels of SGOT and SGPT that differ from levels of other SGOT and SGPT, indicating that there are outliers in the data. In addition, based on the normal category (<40 U/L for SGOT levels and <41 U/L for SGPT levels) and above normal, it was seen that more HBsAg-positive patients had normal SGOT and SGPT levels than patients with higher SGOT and SGPT levels. Increased levels of SGOT and SGPT occur in patients with acute hepatitis B because the immune response is strong, so T cells will fight the virus and damage liver cells where the virus replicates. Liver cells are destroyed, and enzymes in the initial intracellular liver cells are released into the bloodstream. Meanwhile, in inactive hepatitis B carriers, the levels of SGOT and SGPT are normal because the virus cannot replicate or is inactive (Difa, 2020; Esmaeelzadeh et al., 2017; Nafi’ah Rahma Maulidia et al., 2020; Oktaviani et al., 2018). The data may have more carrier inactive patients than acute hepatitis B patients, so there are more patients with normal SGOT and SGPT levels.

According to Chevaliez (2013), Gan et al. (2022), Jaroszewicz et al. (2010), HBsAg levels can vary according to the disease’s phase and the patient’s characteristics. It was noted that HBsAg levels decreased slowly in most patients who achieved a virological response. HBsAg levels vary during the natural course of infection. HBsAg is at its highest level in the early immune tolerance phase. An immune clearance phase follows the immune tolerance phase. During this phase, HBsAg levels decrease slowly and progressively. The lowest HBsAg level was found during the inactive carrier phase (Chevaliez, 2013; Gan et al., 2022; Jaroszewicz et al., 2010).

CONCLUSION

Based on the results, it is known that there is no significant correlation between SGOT and SGPT levels with positive HBsAg levels. Higher HBsAg levels do not necessarily indicate more severe liver damage based on SGOT and SGPT levels. HBsAg levels vary according to the phase of the disease and the patient’s characteristics, as well as the levels of SGOT and SGPT. Nevertheless, this study has limitations because it is an observational study, and data on characteristics and medical records is limited, which hinders a thorough examination of the association between HBsAg, SGOT, and SGPT. Furthermore, many other factors can affect or indicate the severity of liver damage that can be analyzed more comprehensively and used in future studies—consideration of other variables that may affect the requirement of more data in further research.

ACKNOWLEDGMENTS

The data used were provided by Haji Public Hospital, East Java. The authors state there is no conflict of interest with the parties involved in this study.

REFERENCE

