MINIMUM INHIBITORY CONCENTRATION OF PURPLE LEAF EXTRACT (GRAPTOPHYLLUM PICTUM L. GRIFF) AGAINST LACTOBACILLUS ACIDOPHILUS ATCC 4356

Shafira Indriyani Chusnadia 1, Atik Kurniawati 1*, Sari Setyaningsih 2, Erawati Wulandari 3, Pudji Astuti 2

1 Oral Biology Department, Faculty of Dentistry, Jember University, Indonesia
2 Biomedic Department, Faculty of Dentistry, Jember University, Indonesia
3 Conservative Dentistry Department, Faculty of Dentistry, Jember University, Indonesia

ABSTRACT

Background: Dental caries is an oral cavity disease that affects most Indonesians. Lactobacillus acidophilus (L. acidophilus) is one of the bacteria that causes dental caries. Control of bacteria in the form of antibacterial agents is needed to suppress the growth of L. acidophilus. Purple leaves (Graptophyllum pictum L. Griff) are a medicinal plant with antibacterial compounds, namely flavonoids, alkaloids, saponins, and tannins. Purpose: Determine the Minimum Inhibitory Concentration (MIC) of purple leaves extract on the growth of L. acidophilus. Method: The sample consisted of seven groups, including positive control (chlorhexidine 0.2%), negative control (BHI-B), and purple leaves extract with concentrations of 25%, 12.5%, 6.25%, 3.12%, and 1.56%. The antibacterial activity of purple leaves extract was carried out quantitatively using a spectrophotometer with a wavelength of 600 nm. After that, it was incubated at 37°C for 48 hours, followed by absorbance measurement. The absorbance results were then analyzed using the Paired T-Test (before and after incubation). Result: Purple leaves extract concentrations of 6.25%, 12.5%, and 25% had an inhibitory effect on L. acidophilus. Conclusion: Minimum Inhibitory Concentration (MIC) of purple leaves extract on the growth of L. acidophilus was 6.25%.

ARTICLE INFO

Received 30 January 2023
Revised 08 March 2023
Accepted 29 September 2023
Online 11 November 2023

Correspondence:
Atik Kurniawati
E-mail: atik.fkg@unej.ac.id

Keywords:
Lactobacillus acidophilus, Purple leaves extract, MIC, Dental caries

KATA KUNCI:
Lactobacillus acidophilus, Ekstrak daun ungu, Karies gigi
INTRODUCTION

Dental caries is the most common problem affects in the world’s population, including Indonesians, with a prevalence of 88.8% (Riskses, 2018). Dental caries is a disease caused by many factors, one of which is the Lactobacillus acidophilus (L. acidophilus) (Hakim, 2018). L. acidophilus is a facultative, anaerobic, rod-shaped, Gram-positive bacterium found in saliva samples from caries sufferers and on the tongue’s surface (Ahirwar et al., 2019). L. acidophilus produces lactic acid after the fermentation of carbohydrates and can survive in low pH environment. The repeated cycle of acid formation causes the pH in the oral cavity to decrease and will facilitate the growth of acidogenic bacteria, including L. acidophilus. A repeated decrease in pH for a specific time also results in demineralization of the tooth surface (Viranda Sutanti et al., 2021).

Control of bacteria in the form of antibacterial agents is needed to suppress the growth of L. acidophilus. The antibacterial material that is commonly used is chlorhexidine. Research by Evans et al. (2015) said chlorhexidine gluconate 0.2% could inhibit the growth of Streptococcus mutans, Streptococcus sanguinis, and L. acidophilus. However, chlorhexidine has side effects such as xerostomia, hypogeusia, parotid gland swelling, and oral paresthesia (Tartaglia et al., 2019). Another problem that arises from the use of chlorhexidine is Antimicrobial Resistance (AMR), where bacteria become resistant, which means the antibacterial becomes less effective (Brookes et al., 2020). Based on this, the use of new natural materials with minimal side effects and high antibacterial activity.

The use of plants for treatment has been widely used because they have low side effects (Sumayyah, 2018). One of the medicinal plants that can be used is the purple leaves plant (Graptophyllum pictum L. Griff). Purple leaves are 1 of 66 medicinal plant commodities stipulated through the Decree of the Minister of Agriculture Number 104/KPTS/HK.140/M/2/2020. The part that is often used is the leaves. Purple leaves are shrubs, single leaf shape, dark purple, short stems located facing each other and crossed, wavy edges with tapered leaf tips (Wibowo et al., 2020; Syahaya and Iyos, 2016).

Phytochemical analysis of purple leaves revealed the presence of flavonoids, steroids, glycosides, tannins, saponins, chlorophyll, nontoxic alkaloids, and anthocyanins (Makkiyath et al., 2021). Research on the antibacterial activity of purple leaves extract against L. acidophilus has been carried out using the liquid dilution method to obtain a Minimum Inhibitory Concentration (MIC) of 6.25% (Juniarti et al., 2021). However, determining MIC by dilution is difficult for dark concentrated extracts (Sari et al., 2015). Purple leaves extract has a deep purple-black color due to the high content of flavonoids (Juniarti et al., 2021). Therefore, research is needed to determine MIC with other methods.

Bacterial test measurements were carried out by visually looking at the turbidity of the test medium and quantitatively using a spectrophotometer. The advantages of the obtained spectrophotometric test results are pretty accurate and quantitative, and the numbers read directly are recorded by the detector (Seniati et al., 2019). The use of spectrophotometry to measure the antibacterial inhibition of purple leaves extract has yet to be researched. This research aims to strengthen previous studies and to obtain MIC of purple leaves extract on the growth of L. acidophilus with different bacterial test methods.

MATERIAL AND METHOD

The current study is laboratory experimental research with a pre test-post test control group research design. The study was conducted in the Bioscience Laboratory Jember Dental and Oral Hospital (RSGM) University of Jember. L. acidophilus obtained from the Biomedical Laboratory of the Faculty of Dentistry, University of Jember with ATCC 4356 strain. Purple leaves (Graptophyllum pictum L. Griff) were taken from the plantation of the Indonesian Medicines Education Forum (WETO), University of Jember, then macerated with 1500 ml of 70% ethanol for three days. The dilution of the extract was done by serial dilution method (serial dilution) with a ratio of 1:2 (w/v) and obtained concentrations of 25%, 12.5%, 6.25%, 3.12% and 1.56%. Suspension preparation by taking L. acidophilus, which had been cultured, was taken using an ose wire and placed in a test tube containing 4 ml of BHI-B media. The test tube was closed and incubated at 37°C for 48 hours (Balam Bhargava, 2019). The turbidity of the bacterial suspension was according to the standard 0.5 McFarland.

This research included seven groups of positive control (chlorhexidine 0.2%), negative control (BHI-B), and purple leaf extract with concentrations of 25%, 12.5%, 6.25%, 3.12%, and 1.56%. All groups were given 0.1 ml of L. acidophilus suspension. All groups were taken 1 ml and put into the eppendorf to measure the absorbance value. Measurements using a spectrophotometer with a wavelength of 600 nm. After that, they were incubated at 37°C for 48 hours. The test tube that had been incubated was observed for turbidity visually and continued with a measurement with a spectrophotometer.

Visual observation was conducted by looking at the turbidity or precipitate in the test solution. There is no antibacterial activity if there is turbidity or sediment (Kusumaningsih et al., 2021). The group whose turbidity level is the same as or close to the negative control is labeled (-), which means there is no antibacterial activity. Determination of MIC, namely the lowest concentration that has inhibited the growth of bacteria in the tube, is characterized by the absence of turbidity or sediment (Balam Bhargava, 2019). The values of the
observations using a spectrophotometer before and after incubation are compared. If the final absorbance value (after incubation) increases or is greater than the initial absorbance value (before incubation), it can be concluded that bacterial growth is still occurring. Suppose there is no change in the absorbance value between the start and end, or the final absorbance value is smaller than the initial absorbance value. In that case, it can be concluded that the growth of bacteria is inhibited. MIC is determined by the smallest concentration in a tube that has experienced a decrease in absorbance (Astutiningsih et al., 2014; Wuon et al., 2018). The absorbance results were then analyzed using Paired Sample T-Test with SPSS application which aims to determine the average difference between the two paired samples (before and after incubation).

RESULT

The results of the purple leaves extract treatment (Figure 1) which had been given *L. acidophilus* suspension and incubated for 48 hours. In Figure 1, can be seen that tube K(+): positive control, K(-): negative control; A: 25% concentration of purple leaves extract; B: 12.5% concentration of purple leaves extract; C: 6.25% concentration of purple leaves extract; D: purple leaves extract concentration of 3.12%; and E: purple leaves extract concentration of 1.56%.

![Figure 1. Visual observation results of purple leaves extract with *L. acidophilus* suspension after incubation](image)

The results of visual observations were carried out by five different observers with five repetitions (Table 1). Minimum inhibition of bacterial growth by visual observation occurs at a concentration of 3.12%. After observing visually, it is followed by measuring the absorbance value using a spectrophotometer -wavelength before and after incubation at 600 nm. The wavelength of 600 nm is light that bacteria can absorb (McBirney et al., 2016). The results of quantitative observations, namely the average absorbance value of each group before and after using the spectrophotometer, can be seen in Table 2.

Table 1. Visual observation results of purple leaves extract with *L. acidophilus* suspension after incubation

<table>
<thead>
<tr>
<th>Group</th>
<th>Result</th>
<th>Repetition 1</th>
<th>Repetition 2</th>
<th>Repetition 3</th>
<th>Repetition 4</th>
<th>Repetition 5</th>
<th>Desc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K (+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>K (-)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25%</td>
<td>TT</td>
<td>TT</td>
<td>TT</td>
<td>TT</td>
<td>TT</td>
<td>TT</td>
<td>TT</td>
</tr>
<tr>
<td>12.5%</td>
<td>TT</td>
<td>TT</td>
<td>TT</td>
<td>TT</td>
<td>TT</td>
<td>TT</td>
<td>TT</td>
</tr>
<tr>
<td>6.25%</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3.12%</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1.56%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: (+) inhibition of bacterial growth; (-) no inhibition of bacterial growth, TT was not observed.

Table 2. Results of measuring the difference in the average absorbance before and after incubation of purple leaves extract

<table>
<thead>
<tr>
<th>Group</th>
<th>Average</th>
<th>Results</th>
<th>ΔOD</th>
<th>Desc.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before incubation</td>
<td>After incubation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K (+)</td>
<td>0.2224</td>
<td>0.2016</td>
<td>-0.0208</td>
<td>Down</td>
</tr>
<tr>
<td>K (-)</td>
<td>0.0676</td>
<td>0.6162</td>
<td>0.5486</td>
<td>Up</td>
</tr>
<tr>
<td>25%</td>
<td>0.5914</td>
<td>0.4828</td>
<td>-0.1086</td>
<td>Down</td>
</tr>
<tr>
<td>12.5%</td>
<td>0.4650</td>
<td>0.3572</td>
<td>-0.1078</td>
<td>Down</td>
</tr>
<tr>
<td>6.25%</td>
<td>0.3512</td>
<td>0.2508</td>
<td>-0.1004</td>
<td>Down</td>
</tr>
<tr>
<td>3.12%</td>
<td>0.1216</td>
<td>0.4828</td>
<td>0.3612</td>
<td>Up</td>
</tr>
<tr>
<td>1.56%</td>
<td>0.0852</td>
<td>0.4662</td>
<td>0.3810</td>
<td>Up</td>
</tr>
</tbody>
</table>

Note: (down) inhibition of bacterial growth; (up) no inhibition of bacterial growth
At a concentration of 6.25%, it can be seen that the absorbance value before and after incubation decreased, so this concentration was determined as the MIC of purple leaves extract on growth *L. acidophilus*. The absorbance values that have been obtained are grouped and analyzed using the *Paired Sample T-Test* (Table 3).

Table 3. The results of the Paired Sample T-Test

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>SD</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K (+)</td>
<td>6</td>
<td>0.020</td>
<td>0.085</td>
</tr>
<tr>
<td>K (-)</td>
<td>5</td>
<td>0.098</td>
<td>0.001*</td>
</tr>
<tr>
<td>25%</td>
<td>5</td>
<td>0.109</td>
<td>0.088</td>
</tr>
<tr>
<td>12.5%</td>
<td>5</td>
<td>0.093</td>
<td>0.062</td>
</tr>
<tr>
<td>6.25%</td>
<td>5</td>
<td>0.038</td>
<td>0.743</td>
</tr>
<tr>
<td>3.12%</td>
<td>5</td>
<td>0.012</td>
<td>0.001*</td>
</tr>
<tr>
<td>1.56%</td>
<td>5</td>
<td>0.048</td>
<td>0.000*</td>
</tr>
</tbody>
</table>

Note: * there was a significant difference before and after incubation

There was a significant difference in the significance value of the purple leaves extract group at concentrations of 3.12%, 1.56%, and K(-). This difference was caused by a significant increase in *L. acidophilus* growth after incubation because purple leaves extract could not inhibit *L. acidophilus* growth. There was no significant difference in the purple leaves extract concentration of 25%, 12.5%, and 6.25% before and after incubation. The average results before and after incubation were relatively the same due to the antibacterial activity of purple leaves extract.

DISCUSSION

This research is a laboratory experimental study that aims to determine the *Minimum Inhibitory Concentration* (MIC) of purple leaves extract (*Graptofyllum pictum L. Griff*) on the growth of *L. acidophilus*. The antibacterial test method of this study was based on visual observations and quantitative measurements using spectrophotometry. Minimum inhibition of bacterial growth by visual observation occurs at a concentration of 3.12%. MIC was determined visually by comparing the test solution tube with the control group tube. MIC determination is done by looking at the turbidity of the solution in the tube, not by looking at the color density of the solution in the tube. The reading of the MIC results is the lowest concentration that inhibits bacterial growth marked by no turbidity or sediment (Kusumaningsih and Febiyanto, 2015). The results of measuring the absorbance of the purple leaves extract at concentrations of 25%, 12.5%, and 6.25% decreased the absorbance value after incubation. An increased absorbance value indicates bacterial cell growth, while a constant and/or reduced absorbance value after incubation indicates inhibition of bacterial growth. MIC is determined by the smallest concentration, which has inhibited bacterial growth marked by a decrease in absorbance (Astutiningsih et al., 2014; Wuon et al., 2018). The smallest concentration in the tube that inhibited the growth of bacteria in this study was 6.25%.

There are differences in the results of MIC between visual observations and quantitative observations using a spectrophotometer. Visual observation depends on the observer’s subjectivity, lighting, and room conditions when making observations, which can lead to possible errors. While observations using a spectrophotometer, the results obtained are quite accurate because the numbers that are read are recorded directly by the detector and are quantitative in nature. Based on this, purple leaves extract concentration of 6.25% was concluded as MIC from *L. acidophilus*.

The MIC results in this study are in line with previous studies. Juniarti et al. (2021) found that purple leaf extract using 96% ethanol has antibacterial activity against *L. acidophilus* with a minimum inhibitory concentration of 6.25%. This research used the dilution method and then streaked on tryptone yeast cystine media to determine MIC. This research uses a different solvent, using 70% ethanol. There was no difference in the MIC results obtained. Kusumaningsih et al. (2021) found no difference in the MIC value between 70% and 96% ethanol solvent purple leaves extract against *Aggregatibacter actinomycetemcomitans*. However, the diameter of the inhibition zone of 70% ethanol was 3.37 mm larger than that of 96% ethanol.

The inhibition of *L. acidophilus* growth is thought to be due to the antibacterial activity of purple leaves. The antibacterial activity of purple leaves is obtained from secondary metabolites of purple leaves extract. Phytochemical analysis of 70% ethanol extract of purple leaves contains alkaloids, saponins, tannins, and flavonoids. Quantitative analysis of chemical content, namely 2.76% total saponins, 2.66% total flavonoids, and 0.13% tannins (Makkiyah et al., 2021). The antibacterial activity of purple leaves extract in the presence of these secondary metabolites will provide a synergistic and mutually reinforcing effect because both flavonoids, alkaloids, tannins, and saponins all have antibacterial activity (Kurniawati et al., 2020; Dyasti et al., 2021).

It was known that the active compounds contained in purple leaves extract were flavonoids, alkaloids, steroids, saponins, and tannins. These active compounds have different mechanisms as antibacterials. Flavonoids, as antibacterial, cause the denaturation of proteins found in cell walls so that they can damage the composition and change the mechanism of cell wall permeability (Juniarti et al., 2021). Disruption of cell wall permeability results in damage to the plasma membrane so that the processes of osmoregulation, respiration, and transportation are disrupted. The mechanism of saponin as an antibacterial is damaging membrane permeability, causing the cytoplasm to leave the cell and cell death. This condition ultimately
causes bacterial cell death (Anandhi et al., 2014). Alkaloid compounds can damage the peptidoglycan component of L. acidophilus so that the cell wall is not formed and causes bacterial death (Juniarti et al., 2021; Kurniawati et al., 2020). Alkaloids inhibit bacterial growth by inhibiting nucleic acid synthesis, thereby inhibiting the bacterial replication process (Ryan et al., 2018). Tannins work by freezing the protoplasm, precipitating proteins, and binding to proteins to inhibit cell wall formation (Juniarti et al., 2021). Tannins can bind to proteins mainly through hydrophobic interactions and hydrogen bonds. This disrupts L. acidophilus metabolism and decreases lactic acid production (Kaczmarek, 2020).

The limitation of this research, spectrophotometric measurements are not selective in differentiating samples from contaminants or other particles that can absorb light at the same wavelength. In addition, too concentrated extracts can affect light absorption by bacterial cells (Permata et al., 2016). Therefore, further research is needed using High-Performance Liquid Chromatography (HPLC). HPLC is a tool with a separation method in pharmaceutical analysis that can separate specific compounds and measure the amount of these compounds in solution.

CONCLUSION

The Minimum Inhibitory Concentration (MIC) of purple leaves extract (Graptophyllum pictum L. Griff) against L. acidophilus is 6.25%.

ACKNOWLEDGMENTS

The researchers would like to thank all parties, and declare that there is no conflict of interest with the parties involved in this research.

REFERENCE

Balram Bhargava, 2019. Standard Operating Procedures Bacteriology, 2 nd. ed. Division of Publication and Information on behalf of the Secretary, DHR and Director General, ICMR, New Delhi.

