Purpose: Liverworts are a group of plants from the Marchantia genus containing various biologically active compounds and comprised of 65 species worldwide. This plant species belongs to the Marchantiaceae family, which was used empirically in China, North America, Ancient Greece, and Indonesia to treat open wounds, burns, hepatotoxicity, and infection prevention. Now, liverworts have great potential as medicinal and nutraceutical products. Focuses on secondary metabolites obtained from the thalloid and whole plant parts (herbs) and the compilation of their pharmacological activities, which are still poorly documented. Review: This review article obtained related information through extensive international journals (online) scientific databases and offline (books) related to all searches of the species of the genus Marchantia which included: phytochemical content (secondary metabolites) and various pharmacological activities which were collected and compared all results of literature studies from various aspects. Some of the secondary metabolites are Marchantin A, B, D dan E; Paleatin B; Perrottetin F, and Plagiochin E, which have various pharmacological activities. Various results regarding all the therapeutic properties of the genus Marchantia have been produced in the world such as: anti-bacterial, anti-fungal, antioxidant, cytotoxic activity, anti-inflammatory, cardiotonic, hepatoprotective, muscle relaxant, antiosteoporosis, and skin care. Conclusion: Therefore, the potential for the development of medicinal, supplementary and nutraceutical products from various Marchantia species is very large and broad for the future.
INTRODUCTION

Diseases or abnormal conditions in metabolism or other health disorders in living things, including humans, come from damages to the physiological system that cause a decrease or loss of function of biomolecules in cells and tissues so that normal biological responses do not occur. The management of the health of a community/country with a curative approach can sometimes cause new problems such as the cost of medicinal products. Individual health can also be maintained continuously with preventive, promotive, and rehabilitative approaches (Hossain et al., 2013).

Various natural ingredients as part of medicine have been used all over the world for various therapeutic effects on diseases since ancient times, thus have become an integral part of the ethnomedicinal system of medicine in various regions of the world, including China, Ayurvedic, Greek, and Indonesia (Jamu) with only slight differences based on community culture (Adom, 2018; Coritico and Amoroso, 2020; WHO, 1998). Medicinal products from herbal ingredients that have become part of pharmaceutical products with preventive, promotive, rehabilitative to curative benefits can now be formulated into pharmaceutical products themselves. The various herbal ingredients are not only used as pharmaceutical products, but also used as nutraceutical products, and supplements that have higher promotional value because of their functions and dosage forms that attract consumers for their usage, safety, efficacy and quality requirements (Rijai, 2019). Various species and certain plant parts play an important role in preventing, alleviating, and treating several diseases; they are stored and can be found in various library sources, one of which can be found in the Indonesian Herbal Pharmacopoeia book (Pamungkas et al., 2019). Thus, medicinal products from natural ingredients and nutraceuticals as preventive and curative efforts in health management are the most effective strategies, and are preferred by many people (Riaji, 2019; Suprapti et al., 2018).

Moss plants (bryophytes) contain 24,000 species worldwide, but they are not considered significant enough for the economic improvement. Moss as one type of plant that is widely used traditionally in the world, including in Indonesia meets daily needs as food and herbal medicine, either harvested directly from nature or cultivated. There is still a shortage of various processed products from liverworts for food products, nutraceuticals, supplements, and medicinal product preparations. Thus, it is sufficient for researchers around the world to do extensive experimental research on mosses, so that they can be processed into products that have a higher selling value or increase the impact of the economic value of various liverwort herbal plants (Maigoda et al., 2022; Purkon et al., 2021a). Further, the reason also comes from its relatively small size and biomass. Indonesia uses many natural plant resources as potential medicinal products; one of which is the liverworts of the Marchantia genus (Fadhilla et al., 2012; Pamungkas et al., 2019). Marchantia is a genus of liverworts that can be easily found throughout the world. In recent years, global research has been carried out on the Marchantia species. Marchantia species in various classical Greek references/medical records have been used as a valuable plant in applications to heal open wounds as a prevention of bacterial infections, inflammatory wounds, external wounds, snake antivenom, and a remedy for liver dysfunction. The genus Marchantia based on scientific literature is believed to be a primitive lineage of land plants on our planet earth millions of years ago, thus becomes important in the genetic history of plant descent (Bowman, 2016; Viet et al., 2022).

The literature method approach of this study is a comprehensive and extensive review of information by using the literature search method on several scientific articles and reference books/e-books related to the genus Marchantia and related species. Phytochemical content (secondary metabolites) and pharmacological activity were collected online through a search of scientific databases, including Elsevier (Mendeley), EBSCO, Crossref, Springer, DOAJ, and Google Scholar. While the offline literature used includes books and e-books (Parihar and Balekar, 2016). The preliminary written introduction contains the background, various studies of supporting/comparative literature, the formulation of the problem, and the purpose of the literature study/review of this article. Various literature study materials containing various explanations are reviewed and compared in terms of time, the time span for taking the scientific articles under study, the place where the research is carried out, the techniques/methods used, and the design of the literature study.

This scientific literature study presents several secondary metabolites from liverworts of the genus Marchantia, which are potential pharmaceutical products with various pharmacological activities for health maintenance to healing.

LITERATURE STUDY

The results of literature studies have shown that the details of the pharmacological activities associated with species of Marchantia are still poorly documented. Thus, we have tried to collect information about therapeutic efficacy based on the content of secondary metabolites of this genus Marchantia, which in the future has great potential as a medicinal/nutraceutical product whose dosage form can increase the product marketability to the world market because of its function to improve health status.

Liverworts of the Marchantia genus in Indonesia can be obtained from several places; one of them is from the Research Center for Plant Conservation and Botanical Gardens - Cibodas Botanical Gardens (KRC) - LIPI, Cianjur, West Java, which has an extensive collection of other plants that have potential to be
medicinal products (Lailatyi et al., 2016). There are many species of Marchantia in the Cibodas Botanical Gardens – LIPI; one of which is Marchantia paleacea Bertol. As shown in Figure 1, Liverworts of the Marchantia genus are plants usually used in thalloid and whole plants (herbs) as medicine. Plants of this genus contain a lot of secondary metabolites, which are thought to potentially have many pharmacological activities (Fadhilla et al., 2012).

Figure 1. Photo of Marchantia paleacea Bertol. (a species of Marchantia) at Cibodas Botanical Gardens – LIPI, Cianjur, West Java, Indonesia

Taxonomy classification of the genus Marchantia

It is classified for Plantae as a Kingdom, Marchantiophyta as a Division, Marchantiopsida (Hepaticopsida) as a Class, Marchantiales as an Order, Marchantiaceae as a Family, and Marchantia as a Genus (Raihan et al., 2018). Moreover, the relationship of various liverwort taxa of the Marchantiophyta division is habituated to the corrected phylogeny using various biomolecular information by Long et al., 2016 can be seen in Figure 2 (Bowman, 2016; Long et al., 2016).

Geographic distribution

A map of the natural distribution of liverwort species can be seen in Figure 3. More than 111 to 455 liverwort species are in 10,000 km² worldwide, including Indonesia. Species abundance is also an intrinsic measure of the associated biological heterogeneity with a particular area’s ecological, economic, and cultural levels (Lahlou et al., 2000; Von-Konrat et al., 2008).

Figure 2. Relationship of various liverwort taxa (Marchantiophyta) habituated from the corrected phylogeny using molecular data (Long et al., 2016)

Figure 3. Natural distribution map of liverwort and vascular plant species (Von-Konrat et al., 2008)
Description of botany

Species of the genus Marchantia have a thalloid consisting of several different layers of tissue, the topmost of which is a chlorophyll-bearing layer which is primarily a closed air space and communicates with the outside through the micro hole. Rhizoids are divided into two types, smooth and tubercular. The genital (sexual) organs in these plants are generally united in adjacent long-stemmed archegoniophores (Fadhilla et al., 2012). All these species are global and globally comprehensive in their distribution. The habitat of this species is generally found in relatively wet/ humid, shady areas and mainly found at an altitude of at least 2000 meters above sea level, such as wet open forests, riverbanks, wooden rocks, or shady rocks. The genus Marchantia is spread all over the world with about 65 species. Several species in Indonesia include Marchantia emarginata (Marchantia palmata), Marchantia acaulis, Marchantia paleacea Bertol. (Marchantia nepalensis), Marchantia chenopoda, Marchantia polymorpha, and Marchantia geminata Reinw. (Fadhilla et al., 2012; Heinrichs et al., 2005; N. Nurhaeni et al., 2019; Solihat and Kurnia, 2021).

RESULT

Phytochemicals and its biological activities

The results of the literature study provide several secondary metabolites from plants of the genus Marchantia, which have various therapeutic efficacy. The main requirements for medicinal and nutraceutical products are efficacy, safety, and quality (Ahmed et al., 2019; Altemimi et al., 2017; Rijai, 2019). The extraction process is one of the first essential steps in preparing plant test preparations. Several researchers have made considerable efforts to find an efficient extraction method to obtain the right amount of content and high efficacy. The selection of the suitable solvent is significant because if the selected solvent is not suitable, the results obtained are minor or not obtained at all (Vishiya N, 2018; Yang et al., 2021).

Flavonoids which are one of the main constituents of Marchantia consist of quercetin, luteolin, apigenin, and glycosides (Cao et al., 2007). Secondary metabolite compounds from thalloid or whole plant (herb) liverwort Marchantia polymorpha and other Marchantia species are extracted with certain solvents which include: Marchantin A, B, D, and E, as well as Perrottetin F and Paleatin B which belong to the acyclic bis-bibenzyl group and 7',8'-dehydrormarchantin A. The molecular structure of each of these compounds can be seen in Figure 4.

Marchantin A is a simple phenolic compound that is found in almost all types of Marchantia liverworts. Marchantin A and Plagiocin E (macrocyclic bis-bibenzyl) which have been isolated from the species M. emarginata and M. polymorpha have been known to have anticancer and antifungal efficacy (Asakawa, 2008; Wu et al., 2008). A study with the extraction process with ether solvent on M. polymorpha and with Gas chromatography-mass spectrometry/GC-MS showed the presence of several types of isoprenoid compounds as shown in Table 1 (Suire et al., 2000). The use of the Supercritical Fluid Extraction (SFE; CO2) method and the solvent extraction process with petroleum ether on Marchantia convoluta produced certain essential oils. Eleven (11) compounds were identified (using GC-MS), making up 73.62% of SFE extract. The compounds 22.23-dihydro-stigmasterol (31.26%), n-hexadecanoic acid (20.35%), stigmasterol (4.55%), and octadecanoic acid (5.75%) were obtained by the previously mentioned method. For comparison, hexadecanoic acid ethyl esters (36.97%), ethyl oleic (10.47%), E-11-hexadecenoic acid ethyl esters (9.77%), and linoleic acid ethyl esters (4.63%) were obtained with solvents containing petroleum ether in different literatures (Cao et al., 2007). A summary of the content of secondary metabolites obtained with certain types of solvents (or extraction processes) can be seen in Table 1.

Figure 4. Secondary metabolite compounds from thalloid or whole plant (herb) liverwort Marchantia polymorpha and other Marchantia species are extracted with certain solvents which include: (1) Marchantin A, (2) Marchantin B, (3) Marchantin D, (4) Marchantin E, (5) 7',8'-dehydrormarchantin A, (6) Isomarchantin C and acyclic bis-bibenzyls such as (7). Paleatin B and (8). Perrottetin F.
DISCUSSION

Use in ethnomedicine

Mosses, especially liverworts and moss, are sources of biologically active constituents associated with pharmaceutical products. In recent years, liverworts contain many mono-, di- and lipophilic sesquiterpenoid volatile oil compounds such as bibenzyls, benzoates, cinnamates, and naphthalenes (Gahtori and Chatuverdi, 2011; Yayintas and Irkin, 2018).

Bryophytes are used in ethnopharmacological therapy in Indonesia, China, North America, India, and Greece (Fadhilla et al., 2012; Sabovljic et al., 2011). Even though it is used as a traditional medicine on an empirical basis, research in moss as a treatment is still not fully explored. There are still many opportunities for various forms of research (Mishara et al., 2014). According to the existing literature, as much as 28% of it examined the exploration and medical use of mosses by North American natives, followed by China as much as 27%. Although they have long been used traditionally for medicine, the effective use of mosses in medicinal products is still minimal due to the absence of ethnomedicinal data and the lack of availability of cultivation of these materials (M. et al., 2016). The ethnomedicinal use of Marchantia liverworts can be seen in Table 2.

<table>
<thead>
<tr>
<th>Species of Marchantia</th>
<th>Secondary Metabolite Compounds</th>
<th>Type of Extracting Solution/Extraction Methods</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marchantia polymorpha</td>
<td>Cyclic bis-bibenzyls; Marchantin A (MA); MB-G; Marchantin B; Marchantin D; Marchantin E; Acyclic bis-bibenzyls; Perrottetin F; Paleatin B</td>
<td>Methanol</td>
<td>(Asakawa, 2008)</td>
</tr>
<tr>
<td>Marchantia polymorpha</td>
<td>Isoprenoid compounds, including thujopsene, acoradiene, β-chamigrene, cuparene, β-himachalene, γ-cuprenene, dan α-chamigren-9-one</td>
<td>Ether (GC-MS)</td>
<td>(Suire et al., 2000)</td>
</tr>
<tr>
<td>Marchantia paleacea</td>
<td>Marchantin A (MA); Marchantin B; Marchantin D; Marchantin E; Acyclic bis-bibenzyls such as Perrottetin F dan Paleatin B</td>
<td>Methanol</td>
<td>(Asakawa, 2007)</td>
</tr>
<tr>
<td>Marchantia chenopoda</td>
<td>Marchantin A</td>
<td>Methanol</td>
<td>(Asakawa, 2007)</td>
</tr>
<tr>
<td>Marchantia plicata</td>
<td>Marchantin A</td>
<td>Methanol</td>
<td>(Asakawa, 2007)</td>
</tr>
<tr>
<td>Marchantia tasana</td>
<td>Marchantin A</td>
<td>Methanol</td>
<td>(Asakawa, 2007)</td>
</tr>
<tr>
<td>Whole species of Marchantia</td>
<td>Marchantin A dan related to cyclic bis-bibenzyls</td>
<td>Ethyl Ether</td>
<td>(Colegate and Molyneux, 2008)</td>
</tr>
<tr>
<td>Marchantia convoluta</td>
<td>22,23-dihydro-stigmasterol (31.26%), n-hexadecanoic acid (20.35%), stigmasterol (4.55%) and octadecanoic acid (5.75%)</td>
<td>Supercritical (carbon dioxide) Fluid Extraction (SFE) Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexadecanoic acid ethyl ester (36.97%), ethyloleate (10.47%), E-11-hexadecenoic acid ethyl ester (9.77%) and linoleic acid ethyl ester (4.63%)</td>
<td>Petroleum Ether Extraction (PEE)</td>
<td>(Cao et al., 2007)</td>
</tr>
</tbody>
</table>
Table 2. The ethnomedicinal use of Marchantia species

<table>
<thead>
<tr>
<th>Species of the Marchantia genus</th>
<th>Parts used</th>
<th>Medicinal uses</th>
<th>Countries that traditionally use the Marchantia genus</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marchantia polymorpha</td>
<td>Whole plant</td>
<td>Treatment of liver disease, insect bites, healing external wounds, broken bones, snakebites antivenom, anti-inflammatory.</td>
<td>Chinese (Guangxi Zhuang autonomous district), Indonesia (the Khamti tribe of Lohit valley forest in eastern Arunachal Pradesh), North America (Natives), and Ancient Greek</td>
<td>(Asakawa, 2008; Tag et al., 2007)</td>
</tr>
<tr>
<td>Marchantia convoluta</td>
<td>Whole plant</td>
<td>Treatment of hepatitis infection, fever symptoms, and gastric disorders.</td>
<td>Chinese (Guangxi Zhuang autonomous district), North America (Natives), and Ancient Greek</td>
<td>(Asakawa, 2008; Yayintas and Irkin, 2018)</td>
</tr>
<tr>
<td>Marchantia palmate</td>
<td>Whole plant</td>
<td>Treatment of acute inflammation caused by fire, heat, and skin tumors.</td>
<td>India (the Khamti tribe of Lohit valley forest in eastern Arunachal Pradesh), North America (Natives), and Ancient Greek</td>
<td>(Sabovljевич et al., 2011; Tag et al., 2007)</td>
</tr>
<tr>
<td>Marchantia paleacea</td>
<td>Whole plant</td>
<td>Reducing acute inflammation caused by various causative factors.</td>
<td>Chinese (Guangxi Zhuang autonomous district), North America (Natives), Indonesia, and Ancient Greek</td>
<td>(Sabovljевич et al., 2011)</td>
</tr>
</tbody>
</table>

Pharmacological study

Based on searches in several scientific journals, the authors found that various parts of the liverworts of the Marchantia species have various pharmacological activities, which can be seen in Table 3.

- Anti-microbial and anti-fungal activity

Escherichia coli, Proteus mirabilis (Gram negative), and Staphylococcus aureus (Gram positive) which are three different types of bacteria and also Aspergillus flavus, Aspergillus niger, Candida albicans, and Trychophyton mentagrophyte which are four types of fungi were successfully tested with methanol extract. The test results showed that the test extract had efficacy against all the tested microorganisms. The best activity was shown against Staphylococcus aureus bacteria. The high inhibition of Fusarium oxysporium (76.40%) was also shown from the plant species Marchantia polymorpha which was extracted with methanol and flavonoid-free extracts. Further, these two extracts can perfectly inhibit the growth of Rhizoctonia solani (Asakawa, 2012; Mewari and Kumar, 2011).

Streptococcus viridans, S. pyogenes, S. faecalis, and Staphylococcus aureus which are Gram positive bacteria were tested with Marchantin A compound which inhibits colony propagation/ has antibacterial efficacy. Marchantin A was also tested against several gram-negative bacteria, namely: Escherichia coli, Pseudomonas aeruginosa, Neisseria meningitidis, Pasteurella multocida, Haemophilus influenzae, Proteus mirabilis, Pasteurella multocida, and Pseudomonas aeruginosa. The level of effectiveness of Marchantin A compounds against Neisseria meningitidis and Haemophilus influenzae has relatively moderate activity. The results of other research reports indicate that the symptoms of diseases caused by Gram positive bacteria (Staphylococcus aureus and Streptococcus pyogenes) and some of the Gram negative bacteria mentioned above can be treated by Marchantin A (Kamory et al., 1995).

Marchantia palmeta was tested for potential anti-bacterial activity using five (5) different solvents against four human Gram negative pathogenic microorganisms, namely: Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae and two microscopic Gram positive organisms Bacillus subtilis and Staphylococcus aureus. The five types in the above test were: water solvent, methanol, acetone, benzene, and petroleum-ether. Anti-bacterial activity has been demonstrated in the relatively large activity of each microorganism of this plant. The methanol extract in the anti-bacterial activity test of Escherichia coli has shown its efficacy, and the petroleum ether extract has the lowest efficacy against Klebsiella pneumoniae bacteria (Alam et al., 2012). Anti-bacterial activity tests were also carried out on Escherichia coli, S. Typhimurium, S. aureus, and Bacillus enteritidis bacteria from the Marchantia convoluta extract (Xiao et al., 2005). Significant antibacterial activity against Acinetobacter calcoaceticus was shown by the compound Marchantia A obtained from the genus Marchantia. Several species of the Marchantia genus that have been isolated and tested positive for Marchantin A secondary metabolites are: Marchantia chenopoda, Marchantia polymorpha, Marchantia paleacea, Marchantia plicata, and Marchantia tosana (Asakawa, 2007; Alam et al., 2012).

Most of the anti-bacterial of plant origin are secondary metabolites of the phenolic and terpenoid groups (Fadhilla et al., 2012). The anti-bacterial mechanism of phenolic compounds (e.g., Marchantin A) and terpenoids are to damage the cell membrane...
composition and interfere with the active transport and proton forces in the bacterial cytoplasmic membrane. Furthermore, these compounds will denature and inactivate proteins such as enzymes to affect bacterial metabolism (Garcia-Ruiz et al., 2012).

Plagiochin E, a macrocyclic bis(bibenzyl) has efficacy as an antifungal isolated from *Marchantia polymorpha* L. at a dose of 16 mg/L on the formation of chitin cell walls of *C. albicans*. The process of membrane/ cell wall formation in fungi, inhibition of cell wall and septal maturation, and inhibition of shoot formation can be disrupted throughout the entire process by chitin compounds. In addition, the process of division and growth of fungal cells can also be inhibited by chitin compounds (Wu et al., 2008). Wu et al. (2009) also described that when *Candida albicans* was exposed to *Plagiochin E*, there was a decrease in mitochondrial ATP levels due to an inhibitory effect on mitochondrial dehydrogenase activity and an increase in mitochondrial F0F1-ATPase. Thus, this suggests the process of antifungal action of *Plagiochin E* (Wu et al., 2009). The process of cell death (apoptosis) in the fungus *Candida albicans* begins through the metacaspase pathway (Wu et al., 2009). Sun et al. (2009) provided a detailed description on *Candida albicans* related to the antifungal activity of *Plagiochin E* with fluconazole compounds. The results showed that *Plagiochin E* increased the antifungal activity of fluconazole by interfering with the ergosterol biosynthetic instrument.

Aspergillus versi color, *Trichoderma viride*, *Penicillium funiculosum*, *Aspergillus fumigatus*, and *Penicillium ochrochloron* are five fungal species tested for colony growth inhibition by *Marchantia polymorpha* extract. The results showed anti-fungal activity against the five fungal species. From other research conducted in vitro, *Marchantia polymorpha* activity showed better antifungal activity than some extracts from other species of plant simplicia (Sabovljevic et al., 2011).

Methanol and chloroform extracts from *Marchantia polymorpha* have been tested for anti-fungal and potential to inhibit bacterial growth against Gram negative bacteria (*Xanthomonas oryzae*, *Pasturella multocida*) and several types of fungi (*Fusarium oxysporum*, and *Sclerotium rolfsii*). The two extracts showed consequential anti-bacterial activity against *Xanthomonas oryzae* and *Pasturella multocida* and anti-fungal against fungal species *Sclerotium rolfsii* and *Fusarium oxysporum*. So these results show great potential for *Marchantia polymorpha* to be developed in broad-spectrum anti-microbial formulations in the future (Gahtori and Chatuverdi, 2011).

Antioxidant activity

Plant species of the genus *Marchantia* are prosperous sources of herbal antioxidant substances such as flavonoids, tannins, and phenolics which play a major part as antioxidant agents, thus make the plants as free radical scavenger properties. *Marchantia polymorpha* for DPPH radical scavenger and antioxidant activity of ABTS has shown the IC50 value in the methanol extract of *Marchantia polymorpha* is 0.4495 ± 0.029 mg/mL, and the extract of ethyl acetate is 0.2756 ± 0.01 mg/mL. Meanwhile, the results of ABTS antioxidant activity showed the IC50 value of the *Marchantia polymorpha* methanol extract of 0.2441 ± 0.009 mg/mL and the ethyl acetate extract of 0.2126 ± 0.01 mg/mL. This examination determined the free radical scavenger/ antioxidant activity of *Marchantia polymorpha*. The methanolic extract of thalloid *Marchantia polymorpha* produces luteolin compounds which are polyphenolic compounds. In addition, from the thallus of this species, other phenolic compounds were obtained, namely: gallate, vanillate, chlorogenic, cinnamic, protocatechol, coumarate, ferulate, sinapic, caffeate, and hydroxyl benzoate which have close associations with antioxidant activity (Gokbulut et al., 2012).

Muscle relaxant activity

There is a structural relationship between the relaxant pharmacological activity of *Marchantin A* and cyclic bis-bibenzyls with the alkaloid tubocurarine. Most astoundingly, *Marchantin A* and trimethyl ether of *Marchantin A* also exhibited muscular relaxant activity. Trimethyl ether of *Marchantin A* compound at a concentration of 2 x 10-7 – 2 x 10-4 M in Ringer’s solution added with nicotine (10-5 –10-4 M) increased the efficacy of muscle relaxants. In addition to frogs, *Marchantin A* and its trimethyl ether also had muscular relaxant activity in-vivo (mice). The mechanism of action of *Marchantin A* and its trimethyl ether is still unknown (Asakawa, 2008; Colegate and Molyneux, 2008).

Cathepsin L dan B inhibitor activity

Marchantin compound has *Cathepsin L* and B inhibitory activity that correlates with osteoporosis (Katsunuma, 1997) and allergies (Matsunaga et al., 1993). *Marchantin* is a natural chemopreventive compound that has inhibitory activity on the enzyme. Isomarchantin C had the most potent inhibitory effect on each of these enzymes (95% for *Cathepsin L* and 93% for *Cathepsin B* at 10-5 M).

Cardiotonic activity

Marchantin A exhibits cardiotonic activity that increases coronary blood flow by 2.5 mL/min at 0.1 mg dose (Asakawa, 2007).

Anti-inflammatory activity

Marchantia palmata is used in treating acute inflammation caused by fire or hot water. *M. polymorpha* relieves pain due to acne on the face or other body, which uses the same as *M. palmate*. There was research related to the use of albumin denaturation inhibition method as an anti-inflammatory activity test method that was carried out on the ethanol extract of *M. polymorpha*. The albumin synthesis process was
inhibited by *M. polymorpha* extract which depended on the extract dose. Therefore, the anti-inflammatory activity produced was comparable to the anti-inflammatory activity of the drug compound sodium diclofenac (Tag et al., 2007).

Cytotoxic (anti-cancer) activity

Three types of extracts from the *Marchantia convoluta* plant, namely petroleum ether, ethyl acetate and n-butanol were then tested for their cytotoxic activity against human lung carcinoma cells (H1299) and relatively small liver carcinoma cells (HepG2). Cytotoxic activity and cell viability were significant in ethyl acetate extract compared to other extracts against lung and liver carcinoma cells (Lahlou et al., 2000). *Marchantia polymorpha*, showed anti-cancer activity against human nasopharyngeal carcinoma (Jensen et al., 2012). *Marchantia paleacea*, *Marchantia polymorpha*, and *Marchantia tosana* produced *Marchantin A* compounds that have shown cytotoxic activity against leukemia cells (Asakawa, 2007). *Marchantin A* was obtained from the species *M. polymorpha* in Iceland, and it was found that *Marchantin A* promoted decreased cell viability of breast cancer cell lines A256, MCF7, and T47D. Fluorescence microscopy confirmed the antimicrotubular effect of *Marchantin A* (Jensen et al., 2012).

Hepatoprotective activity

In *Marchantia convoluta simplicia*, research has been carried out to protect the liver and treat skin swelling ethnomedicinally in China. Xiao (2005) has examined the pharmacological activity of the secondary metabolites of the flavonoid *Marchantia convoluta*. High doses of *M. convoluta* (40 g/mL) succeeded in reducing the activity of SGPT/ALT and SGOT/AST enzymes in the blood serum of rats with acute hepatic injury caused by CCl4 and improving the total protein (TP) and alkaline phosphatase (ALP) content (Fernando and Soysa, 2014; Jian-Bo et al., 2005; Karmakar et al., 2020; Purkon et al., 2021b).

Other therapeutic effects

M. polymorpha is used as an antipyretic activity, hepatoprotector, antidote and antivenom for snakebite, diuretic, and used to heal wounds, fractures, burns and open wounds (Asakawa, 2008). Liverworts such as *M. tosana* exhibit antifungal, antimicrobial, and antitumor activity (Lahlou et al., 2000). *M. paleacea* has been used as an antibacterial against pathogenic bacteria and food spoilers in Indonesia (Fadhilla et al., 2012).

Table 3. Summary of *Marchantia* species and their biological activity (pharmacological activities)

<table>
<thead>
<tr>
<th>Species of the Marchantia genus</th>
<th>Parts used</th>
<th>Dose concentration</th>
<th>Extract</th>
<th>Medicinal uses</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marchantia polymorpha</td>
<td>Thalloid</td>
<td>5.30-23.7 µg/mL</td>
<td>Methanol</td>
<td>Anti-HIV-1 activity (for the Marchantin A, B, D, paleatin B and perrottetin F compounds).</td>
<td>(Asakawa, 2007)</td>
</tr>
<tr>
<td></td>
<td>Thalloid</td>
<td>14.4-97.5 µM</td>
<td>Methanol</td>
<td>DNA polymelase β inhibitory (ID50) (for the Marchantin A, B, D, paleatin B, and perrottetin F compounds).</td>
<td>(Asakawa, 2007)</td>
</tr>
<tr>
<td></td>
<td>Thalloid</td>
<td>3.7-20 µM</td>
<td>Methanol</td>
<td>Cytotoxic (against KB cell and P-388) (for the Marchantin A, B, D, paleatin B and perrottetin F compounds).</td>
<td>(Asakawa, 2007)</td>
</tr>
<tr>
<td>Whole plant</td>
<td>n/a</td>
<td>Methanol</td>
<td></td>
<td>Antipyrretic, hepatoprotective, antidote, diuretic activity, used to heal cuts, fractures, antivenom for snake bites, burns, and open wounds.</td>
<td>(Asakawa, 2008)</td>
</tr>
</tbody>
</table>

M. polymorpha, *M. paleacea*, *M. chenopoda*, *M. plicata* and *M. tosana* containing *Marchantin A* Thalloid Dose concentration data are listed respectively in the test results column Methanol Anti-bacterial activity against *Acinetobacter calcoaceticus* (6.25 µg/mL), *Alcaligenes faecalis* (100 µg/mL), *Bacillus cereus* (12.5 µg/mL), *Bacillus megaterium* (25 µg/mL), *Bacillus subtilis* (25 µg/mL), *Cryptococcus neoformans* (12.5 µg/mL), *Enterobacter cloacae* (100 µg/mL), *Escherichia coli* (100 µg/mL), *Proteus mirabilis* (100 µg/mL), *Pseudomonas aeruginosa* (100 µg/mL), *Salmonella typhimurium* (100 µg/mL), *Staphylococcus aureus* (3.13-25 µg/mL). (Asakawa, 2007)
<table>
<thead>
<tr>
<th>Species of the Marchantia genus</th>
<th>Parts used</th>
<th>Dose concentration</th>
<th>Extract</th>
<th>Medicinal uses</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. polymorpha, M. paleacea, M. chenopoda, M. plicata and M. tosana containing Marchantin A</td>
<td>Thalloid</td>
<td>Dose concentration data are listed respectively in the test results column</td>
<td>Methanol</td>
<td>Anti-fungal activity against Alternaria kikuchiana (MIC 100 µg/mL), Aspergillus fumigatus (MIC 100 µg/mL), Aspergillus niger (25-100 µg/mL), Candida albicans, Mirosporum gyipseum, Penicillium chrysogenum (100 µg/mL), Piricularia oryzae (12.5 µg/mL), Rhizoctonia solani (50 µg/mL), Saccharomyces cerevisiae, Sporothrix schenckii (100 µg/mL) and the dermatophytes Trichophyton mentagrophytes (3.13 µg/mL) and Trichophyton rubrum (100 µg/mL).</td>
<td>(Asakawa, 2007)</td>
</tr>
<tr>
<td>Marchantia polymorpha L.</td>
<td>Thalloid</td>
<td>Dose concentration data are listed respectively in the test results column</td>
<td>Methanol and Chloroform</td>
<td>Anti-bacterial activity (Gram negative) against Xanthomonas oryzae (11.58% Inhibition; 2.50 µg/mL (MIC) & 2.75 µg/mL (MBC)), Pasturella multocida (2.55% Inhibition; 1.25 µg/mL (MIC) & 1.25 µg/mL (MBC)).</td>
<td>(Gahtori and Chatuverdi, 2011)</td>
</tr>
<tr>
<td>Marchantia polymorpha L.</td>
<td>Thalloid</td>
<td>Dose concentration data are listed respectively in the test results column</td>
<td>Methanol and Chloroform</td>
<td>Anti-fungal activity against Sclerotium rolfsii (32.65% inhibition; 4.50 µg/mL) and Fusarium oxysporum (33.44% inhibition; 0.65 µg/mL).</td>
<td>(Gahtori and Chatuverdi, 2011)</td>
</tr>
<tr>
<td>Species of Marchantia containing Marchantin D and E</td>
<td>Whole plant</td>
<td>ID50 2.0-95.0 g/mL</td>
<td>Methanol</td>
<td>Calmodulin Inhibitory Activity (76-84% on 10^-6 mol)</td>
<td>(Asakawa, 2007)</td>
</tr>
<tr>
<td>Species from Marchantia contain phenolic compounds (bis-bibenzyls group)</td>
<td>Whole plant</td>
<td>Dose concentration data are listed respectively in the test results column</td>
<td>Methanol</td>
<td>Cyclooxygenase inhibitory activity: Marchantin A (IC50 46.4 µM); Marchantin B (55.9 µM) and Marchantin E (58.0 µM).</td>
<td>(Asakawa, 2008)</td>
</tr>
<tr>
<td>Species from Marchantia containing Marchantin A and related cyclic bis-bibenzyls</td>
<td>Whole plant</td>
<td>2 x10^-7 to 2 x 10^-4 M in ringer solution</td>
<td>Ethyl Ether</td>
<td>Muscle relaxing activity (in-vitro and in-vivo test in mice).</td>
<td>(Asakawa, 2008; Colegate and Molyneux, 2008)</td>
</tr>
<tr>
<td>Species from Marchantia containing Isomarchantin C</td>
<td>Whole plant</td>
<td>95% for cathepsin L and 93% for cathepsin B at 10-5 M</td>
<td>Methanol</td>
<td>Cathepsin L and B inhibitory activity.</td>
<td>(Katsunuma, 1997; Asakawa, 2007)</td>
</tr>
<tr>
<td>Species of Marchantia containing Marchantin A</td>
<td>Whole plant</td>
<td>0.1 mg dose (increase coro- nary blood flow 2.5 mL/min)</td>
<td>Methanol</td>
<td>Cardiotonic activity.</td>
<td>(Asakawa, 2007)</td>
</tr>
<tr>
<td>Marchantia polymorpha</td>
<td>Whole plant</td>
<td>Plagiochin E at a dose of 16 mg/L</td>
<td>n/a</td>
<td>Antifungal against Candida albicans.</td>
<td>(Wu et al., 2008)</td>
</tr>
</tbody>
</table>
CONCLUSION

Natural resources, especially the Marchantia species of liverworts, are still considered potential candidates for discovering and developing preventive, promotive, rehabilitative, and curative medicinal products. The content of secondary metabolites that are already known from this genus and have the potential to become medicinal/nutraceutical products are: Marchantia A, B, D and E; Isomachantin C; Plagiochin E; Paleatin B and Perrottetin F. The pharmacological activities obtained were also quite a lot which included: anti-bacterial, antifungal, antioxidant, cytotoxic activity (anti-cancer), anti-inflammatory, cardiotoxic activity, muscle relaxant activity, hepatoprotector, the inhibitory activity of Cathepsin L and B (antiosteoporosis). Medicinal/nutraceutical products with these functions can be formulated in certain dosage forms, such as functional foods, supplements, and traditional medicinal products. Some researchers believe that bioactive phytochemicals are responsible for the actions of these various pharmacological activities. More work is needed to isolate other active substances, in-vivo preclinical testing for the results of studies that have only reached in-vitro tests and clinical trials of secondary metabolites with therapeutic effects from this Marchantia species.

ACKNOWLEDGMENTS

The author would like to acknowledge LPPM Institut Teknologi Bandung, UPPM Poltekkes Kemenkes Bandung, and Research Center for Plant Conservation and Botanical Gardens - Cibodas Botanical Gardens (KRC) - LIPI, Cianjur, West Java for the support and the provision of facilities (there is no funding for this research).

REFERENCES

