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ABSTRACT 

COVID-19 has become a pandemic in the last 3 years worldwide and cases cause high mortality and morbidity. To 

reduce COVID-19 infection, we need to keep our immune system healthy. Several nutrients have been shown to have 

specific abilities to increase the power of the immune system, but their use in the treatment of COVID-19 is still being 

debated. This review aims to determine the role of minerals and synbiotics in increasing immunity during the COVID- 

19 pandemic. Specific minerals such as zinc, selenium, iron and copper have promising potential to treat COVID-19 

by reducing clinical impact, markers of inflammation, and improving immunological biomarkers. In addition to 

increasing mineral intake, maintaining a healthy immune system can also be done by improving the health of the gut 

microbiota. One of the therapies that is considered to have a positive impact on handling COVID-19 is using synbiotics 

(a combination of prebiotics and probiotics). However, the safety and efficacy of mineral and synbiotic supplementation 

in COVID-19 patients as adjunctive therapy still requires further research. Minerals and synbiotics can help boost the 

immune system and reduce symptoms during a COVID-19 infection. 
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INTRODUCTION 
 

Coronavirus Disease-19 (COVID-19) is an 

acute infectious respiratory disease transmitted 

through droplets and caused by an RNA virus 

called SARS-CoV-2. World Health Organization 

has announced that COVID-19 are globally 

pandemic  after  its  outbreak in  all  countries. 

Indonesia itself has gone through third wave of 

COVID-19 cases with more than 6 million positive 

cases and 157 thousand death cases on 26 May 

2022. COVID-19 specifically gives symptoms like 

fever, headache, difficulty of breathing, dyspnea, 

dry cough, vomit, diarrhea, and for several cases 

leave invasive lesion in the lungs (C. Huang 

et al., 2020; Shi et al., 2020). Severity of the 

COVID-19 cases are very diverse and depends 

on the occurrence of several comorbidities like 

cardiovascular disease, hypertension, metabolic 

syndrome, lung diseases, and diabetes mellitus 

type 2. The mortality also higher in older people 

and has at least one comorbidities (Mungroo et al., 

2020; Zheng et al., 2020). 

As it rapid transmission and evolution, until 

now there are no specific drugs that have been 

found to cure or prevent COVID-19 infection. So 

that it is important for people to always make sure 

their immune system in its best condition so that 

can fight COVID-19 without further symptom. 

Human immunity is a complex system that need 

several nutrients in order to make immune cells 

work optimally and can combat pathogenic agents 

(Shetty, 2010; Wood, 2006). One of which mineral 

that plays major role in providing better immune 

system, namely zinc, iron, selenium, and cooper. 

Several studies has showed information about the 

correlation between mineral and immune system 

both innate and adaptive (Gombart et al., 2020; 

Wintergerst et al., 2007). Deficiencies of several 

mineral known can affect immune cell function 

and make people more susceptible to infections 

(Calder et al., 2020; Gombart et al., 2020). So that 

it is important to make sure adequate intake of 

mineral during COVID-19 pandemic. 

In order to gain an optimal immune system 

against COVID-19, it is necessary to also maintain 
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gut health. It is important because the SARS-
CoV 2 can enter bloodstream through Angiotensin 
Converting Enzyme (ACE2) receptor which 
mostly can be found in digestive tract (Li et al., 
2003; Zou et al., 2020). This also answer why 
many cases of COVID-19 has developed digestive 
symptom during infection period. Several studies 
has shown that the usage of synbiotic (combination 
of prebiotic and probiotic) can act as prevention 
to infections related to gut by helping balance 
intestinal microecology, improve the microbiota 
dysbiosis, and prevent secondary infections caused 
by bacterial translocation (Xu et al., 2020). But, 
the connection between synbiotic and COVID-19 
still unclear and need further studies.

Reviewing the needs to explore the 
connection between mineral and synbiotic intake, 
it is necessary to make a review to investigate these 
correlation. In this review, we assessed the role of 
mineral and synbiotic in supporting the immune 
system and its correlation to COVID-19.

THE ROLE OF MINERAL IN THE 
IMMUNE SYSTEM

1. Zinc

Zinc takes significant part within the 
immune system. The free form of zinc has an 
immediate antiviral effect (Alpert, 2017). The 
daily requirement for zinc is 8-11 mg/day, with an 
upper limit of 40 mg/day. Zinc intake as many as 
30-50 mg/day during infection is recommended 
to control RNA virus, such as influenza and 
coronavirus (Institute of Medicine, 2001; McCarty 
& DiNicolantonio, 2020). If zinc deficiency 
occurs, then there will be an increase in the risks 
of viral infection, thymic atrophy, lymphopenia, 
and decreased lymphocyte responses. Zinc can be 
found in lean red meat, whole grain cereals, nuts 
and legumes (Hidayati et al., 2019).

Zinc can inhibit enzymatic activities, 
SARS-CoV RNA polymerase replication, and 
inhibit ACE2 activities. Zn2+ also reduces the 
permeability of cell membranes without damaging 
nor penetrating the cells. Zinc provides protective 
eff ects in the prevention and COVID-19 therapy, 
where zinc increases the capillary epithelial barriers 

and inhibit the transcapillary protein plasma 
movement. Therefore, zinc reduces local oedemic 
incidents, infl ammation, exudation, and mucus 
secretion, preventing lung injury due to the use of 
a ventilator, modulating the antiviral immunity, and 
being a regulator of the tight junction of ZO-1 and 
Claudin-1 proteins to increase its barrier functions 
so that the virus can be prevented (Hunter et al., 
2020; Skalny et al., 2020).

Zinc is vital for cell growth and diff erentiation 
of both innate and humoral immune cells, and also 
modulate cytokine release and trigger T cell CD8+ 
proliferation (Wintergerst et al., 2007). Zinc is 
also vital for the intracellular binding of tyrosine 
kinase at T cell receptors, which is required for 
the development and activation of T lymphocytes 
(Wintergerst et al., 2006). Furthermore, zinc is a 
cofactor for 750 transcriptional factors for protein 
synthesis related to the immune and a cofactor 
for 200 enzymes involved in the formation of 
antioxidants, such as superoxide dismutase 
(SOD) and SMAD anti-inflammatory protein, 
by stabilizing the tertiary structure and being 
an essential component on the catalytic site of 
enzymes (Andreini et al., 2011; Gammoh & 
Rink, 2017). Zinc is needed in the production of 
the metallothionine antioxidant complex that is 
responsible for the lungs’ elasticity. Moreover, it 
has been noticed that zinc plays a role in doubled-
reducing the mortality rate due to pneumonia in 
people with adequate zinc intake (Barnett et al., 
2010).

Zinc supplementation causes transient 
zinc chelation by N,N,N’,N’-tetrakis(2-
pyridinylmethyl)-1,2-ethanediamine (TPEN) 
to induct the antiviral inside cells through the 
activation of NF-κB that triggers the interferon 
signaling. Zinc also roles as an anti-infl ammatory 
agent, which triggers the development of Treg, 
Th17, and Th9 cells and helps the production of 
IgG antibody (Bonaventura et al., 2015; Gombart 
et al., 2020; Subramanian Vignesh & Deepe  Jr, 
2016). Zinc is a part of some antiviral compounds, 
namely zinc N-ethyl-N-phenyldithiocarbamate 
(EPDTC). Zn2+ ion also triggers viricidal 
activities by damaging the receptors on the 
surface of the viral cell through ions-centered 
tetrahedral geometric coordination that functions 
as an inhibitor against 3C and 3C-like proteases 
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(Lee et al., 2009). Zinc is also able to decrease 
the expressions of IL-6 plasma, IFN-α, IL-1b, 
and TNF-α genes. On the other hand, zinc can 
increase the IFN-α mediated by JAK1/STAT1 
through signaling and increase antivirus enzyme, 
for instance, latent ribonuclease (RNase L) and 
protein kinase RNA (PKR), which results in 
RNA degradation and RNA translation inhibition 
(Günzel & Yu, 2013).

In vitro study revealed that zinc could reduce 
the ability of RNA replication by inhibiting RNA 
polymerase as in coronavirus (Martindale et al., 
2020). The antiviral zinc-fi nger protein complex 
(ZAP) controls the process of virus entry, DNA/
RNA replication, and the spread of viral infections 
(Wang et al., 2010). ZAP ACCHC3 can bind to 
RNA and facilitate intracellular RNA detection 
by activating retinoic acid-inducible gene-I 
(RIG-1)-like receptors (RLRs) and MDA5. The 
process then causes the kinases such as TBK1 
and IkK phosphorylases the interferon regulatory 
transcription factor 3 (IRF3) and IkB-alpha 
(inhibitor of NK-kB) that increases the type-1 
interferon. IFN-α triggers the signal to escalate the 
antiviral protein (RNase L and PKR) that degrades 
and restrains the process of RNA translation. Zinc 
inhibit the NK-kB activities using A20 (ZAP) 
protein expression that decreases TNF receptor 
regulation and initiates TLR-NK-kB tracks. Zinc 
also acts as a cyclic nucleotide phosphodiesterase 
(PDE). When PDE is inhibited, it will increase 
cyclic nucleotide guanosin monophosphate 
(cGMP) which activates PKA (protein kinase A) 
and inhibits NK-kB.

2. Iron

Iron is one of the essential nutrients for the 
body with various functions, including energy 
metabolism, growth and development, and the 
immune system (Sundari & Nuryanto, 2016). 
Iron can be found in numerous food sources, 
for instance, red meat, liver (beef and chicken), 
beans, red rice, and dark green leafy vegetables 
(spinach, kale, and others) (Calder, 2020). Iron is 
needed by the ribonucleotide reductase enzymes 
to synthesize the DNA, which functions to form 
lymphocyte-T cells. Iron defi ciency can impaired 
the myeloperoxidase enzyme functions in the  
immune system (Sundari & Nuryanto, 2016).

Care needs to be taken in providing iron 
supplementation in people suffering from 
infectious diseases. Studies in tropical areas 
affi  rmed that iron administration to children with 
a dose above a certain threshold could escalate 
the risk of malaria and other infections, including 
pneumonia. Therefore, the intervention of iron in 
malaria-endemic areas is not recommended due 
to several reasons. First, excess iron may lead to 
the disruption of the immune functions. Second, 
excess iron can worsen the infl ammation. Third, 
microorganisms need iron to support the growth 
of the pathogen (Cherayil, 2010; Drakesmith & 
Prentice, 2012; Ganz, 2018; Ganz & Nemeth, 
2015; Nairz et al., 2017, 2018; Oppenheimer, 2001; 
Weiss, 2002).

Based on those reasons, hence, some methods 
have been developed to restrain iron-binding 
or used by pathogens. A study revealed that the 
provision of iron as much as 50 mg for four days in 
a week to school-aged children with iron defi ciency 
increased the risk in respiratory tract infections. On 
the other hand, the addition of omega-3 PUFA as 
much as 500 mg for four days a week can decrease 
the adverse eff ects of iron supplementation (Malan 
et al., 2015). A meta-analysis study in Chinese 
children disclosed that those who undergo recurrent 
respiratory tract infections tend to be lack of iron 
on their hair (Mao et al., 2014). Thus, it can be 
implied that the administration of iron must be 
precise, whether the doses, the patient’s condition, 
or the way of administering.

3. Selenium

Selenium was discovered by John Jakob 
Berzelius, a Swedish scientist, in 1817. According 
to Avery J.C. and Hoff man PR, selenium in the 
human immune system can be studied from the 
perspectives of immunobiology, leucocyte function 
increase, and the immune response towards 
pathogens and anti-cancers (Avery & Hoff mann, 
2018). In general, seafood and internal organs are 
rich sources of selenium. In addition, meat, whole 
grains, dairy products, and eggs are also good 
sources of selenium (Kusmana, 2017).

Selenium defi ciency can generate immune-
incompetence, which will enlarge the risks of 
viral infections. Epidemiological study in China 
revealed the positive correlations between the 
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population selenium levels and COVID-19 
recovery rates in 17 cities (Zhang et al., 2020); the 
higher the selenium level in the body, the faster 
the recovery of COVID-19 patients. Selenium is 
one of the micronutrients with essential roles in 
the immune system, particularly in suppressing 
the occurrence of oxidative stress. COVID-19 
includes in viral infections related to the increase 
in oxidative stress by enhancing enzyme-producing 
ROS. Selenium, in the form of sodium selenite 
reduces the ROS production and the apoptosis of 
infected cells (Kretz-Remy & Arrigo, 2001).

RNA virus could be a trigger of NF-κB 
(Nuclear Factor kappa B) activation. The activation 
of NF-κB in cells infected with the nucleocapsid 
protein from the SARS-CoV can cause the severity 
of infl ammation in lung lesions in SARS patients 
(Liao et al., 2005). Selenium has a role as the NF-
κB inhibitor among mice exposed to the SARS-
CoV, which relates to the survival/immunity 
(DeDiego et al., 2014).

Besides the functions that have been 
elucidated, selenium also enhance the activity of 
the glutathione peroxidase (GSH-Px) (Ghneim, 
2017)Selenium in the glutathione peroxidase acts 
as the catalysator in breaking down the peroxides 
to be a non-toxic/non-reactive bond. Together with 
vitamin E, selenium can protect endothelial cells/
cell membranes that become the target of SAR-
CoV-2 infection (Brigelius-Flohé et al., 2003). 
The integrity of cell membranes is fundamental, 
given the cytokine production is determined by 
the receptor in the cell membrane; hence, selenium 
is influential in increasing cellular immunity. 
Selenium is also an antioxidant that boosting 
the immune system. Selenium defi ciency has a 
signifi cant impact on the activity of selenoprotein 
antioxidant (specifi cally Gpx 1 expression) and 
on reducing the mRNA signal related to the 
infl ammatory pathways. Thus, reducing the body’s 
resistance against the viruses (Z. Huang et al., 
2012).

4. Copper

Copper acts as the cofactor in the cellular 
metabolic reactions and copper-dependent enzymes 
catalyst reactions that involve molecular oxygen 
species. Several copper enzymes play a role in the 

body’s antioxidant defenses (Shetty, 2010). Copper 
is a micronutrient needed by pathogens and the host 
during the viral infection. Copper support Th cells, 
B cells, neutrophil, NK cells, and macrophage 
that infl uences the innate and adaptive immune 
responses (Raha et al., 2020). Copper also supports 
macrophage functions (copper accumulates in the 
phagolysosomes of macrophages to fi ght infectious 
agents), neutrophil, monocytes, and also increases 
the activity of NK cells. Furthermore, copper plays 
a role in the diff erentiation and proliferation of T 
cells, as a component of intrinsic antimicrobial 
which has anti-infl amatory action, antioxidant, 
and oxidative burst (Gombart et al., 2020). It is 
believed that copper has a role in the infl ammatory 
responses given copper is a part of Cu/Zn SOD 
enzymes, which are the keys in the defense against 
ROS in maintaining the balance of intracellular 
antioxidant along with selenium and zinc (Gombart 
et al., 2020; Wintergerst et al., 2007).

The data regarding copper deficiency in 
humans is very limited due to lack of effi  ciency 
usages, homeostasis, and the appropriate 
parameters to determine the status of copper. The 
suffi  cient amount of copper intake enhanced the 
Th1 responses, decrease T cell proliferation, and 
increase B cell circulations. A high dose of copper 
intake (7 mg per day) for healthy adult males in 
an extended period can reduce the percentage 
of neutrophilic circulation, IL-2 serum receptor, 
and antibody titers against infl uenza virus strain 
Beijing. On the contrary, the same dose for the 
same subjects can increase the average immune 
responses (IL-6). Moreover, there is a pro-oxidant 
eff ect that makes this high dose of intake protect 
red blood cells against peroxidation induced in 
vitro (Wintergerst et al., 2007).

Copper can kill certain contagious viruses, 
such as bronchitis virus, poliovirus, HIV type 1, 
both enveloped and nonenveloped viruses, and 
single or double-stranded DNA and RNA viruses. 
Thus, the addition of copper intake can encourage 
both the innate and adaptive immune systems 
(Raha et al., 2020). However, until recently, the 
registered trials to disclose the impact of copper 
supplementation on COVID-19 patients is not yet 
published.
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THE ROLE OF SYNBIOTIC IN THE 
IMMUNE SYSTEM

The use of synbiotic (combination of prebiotic 
and probiotic) in preventing the risks of infections 
began to be noticed. The Zhejiang Hospital of 
China recommended the provision of synbiotic 
in COVID-19 patients to help balance intestinal 
microecology, improve the microbiota dysbiosis, 
and prevent secondary infections caused by 
bacterial translocation (Xu et al., 2020).

1. Probiotics

Some studies have revealed the effects of 
probiotics (Bifi dobacterium and Lactobacillus) 
provisions in reducing respiratory infections 
(de Araujo et al., 2015; Ichinohe et al., 2011). 
Probiotics can escalate the interferon and the 
number and activities of antigen, NK cells, T cells, 
as well as specifi c antibody both systemic and 
mucosal (Namba et al., 2010; Zelaya et al., 2016). 
Probiotics are proven infl uential in regulating pro-
infl ammatory and immunoregulatory cytokines 
that control the clearance virus and prevents 
lung damages caused by the immune responses. 
Lactobacillus plantarum DR7 is affi  rmed to be 
able to suppress the proinflammatory plasma 
cytokines (IFN-gamma and TNF-alpha), increasing 
the anti-inflammatory cytokines (IL-4, IL-10), 
and decreasing the plasma peroxides and the 
oxidative stress (Chong et al., 2019). It is important 
in COVID-19 patients which experiencing the 
cytokine storm. Probiotics can also enhance the 
tight junction integrity and production of the short 
chain fatty acid (SCFA) Butyrate, and provide 
nutrition for colonocytes thus, reduce the SARS-
CoV-2 invasion (Baud et al., 2020). Studies also 
found that probiotics could upsurge the amount of 
leucocyte, neutrophil, IL-2. TNF-beta, decrease the 
cytokine expressions (TNF-alpha, IL-1beta, IL-6, 
IL-8, IL-5, IL13), and IgA saliva level can produce 
bacteriocin and reuterin, promote phagocytosis, 
and can maintain Th1 and Th2 homeostasis (Fooks 
& Gibson, 2002; Guillemard et al., 2010).

Lactobacillus plantarum, as one type of 
probiotics has been shown to have antiviral 
activities against coronavirus in the intestinal 
epithelial cells. L.plantarum can also provide IFN- 
λ3 to suppress the enteric coronavirus infection 
and can be used as an alternative antiviral therapy 

(Liu et al., 2020). Several meta-analyses showed 
the presence of probiotic eff ects (Lactobacillus 
rhamnosus GG, Bacillus subtilis, and Enterococcus 
faecalis) in decreasing the incidence and the viral 
infection duration of the critically ill patients with 
respiratory tract infections (Hao et al., 2015; King 
et al., 2014). Xu et al., in their study, concluded 
that many COVID-19 patients in China experience 
dysbiosis of intestinal microbiota, which is 
marked by the decrease in Lactobacillus and 
Bifi dobacterium because the use of antibiotics and 
COVID-19 causes diarrhea (Xu et al., 2020).

Probiotics, such as Lactobacillus plantarum, 
Lactobacillus casei, Bifidobacterium animalis, 
Bacillus coagulans, Streptococcus salivarius, 
and Enterococcus faecium have proinfl ammatory 
interleukin inhibitor effects. On the other 
hand, Lactobacillus gasseri, Lactobacillus 
rhamnosus, and Bifidobacterium longum are 
acknowledged for their ability to increase the 
antibody. Bifi dobacterium animalis can prevent 
the coronavirus replication by lowering the 
inositol-requiring enzyme 1 (IRE1) pathway, 
thereby reducing interleukin 17 (Bozkurt et al., 
2019). Lactococcus lactis JCM5805 activates 
plasmacytoid dendritic cells (pDC), where the 
pDC acts as the cells that produce IFN1 (Siegal et 
al., 1999; Trinchieri & Santoli, 1978) and mucosal 
T cells (Tezuka et al., 2011). Moreover, pDC 
can directly prevent viral spread and replication 
(Theofi lopoulos et al., 2004), and activate the NK 
cells (Tezuka et al., 2011). Additionally, some 
probiotics, for instance, Enterococcus faecium 
HDRsEf1, can reduce the mRNA TLR4, TLR5, 
TLR7, and TLR8 (Tian et al., 2016).

Probiotics in Indonesian foods can be found 
from sayur asin, tempoyak, mandai, tape, growol 
tempe, kecap, bakasang, dadih, and many more. 
Mostly these foods are rich in lactic acid bacteria 
that good to our health (Nuraida, 2015).

2. Prebiotics

Prebiotics, which are undigested carbohydrates 
such as inulin, polydextrose, oligosaccharides, 
fi ber, and resistant starch, are used by intestinal 
microbes for fermentation. Prebiotics are also 
acknowledged to increase the immunity and the 
diversity of the gut microbiota, as well as aiding 
digestion (Bouhnik et al., 2007). As an example, 
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prebiotics obtained from wheat is proven to reduce 
the proinfl ammatory cytokine IL-6 and to boost 
the anti-infl ammatory cytokine IL-10 (Keim & 
Martin, 2014; West et al., 2017). Prebiotics such 
as wheat bran, fructooligosaccharides (FOS), 
and galactosaccharides (GOS) can increase 
the butyrate levels that reduce inflammation 
and improve the respiratory fi brosis (Anand & 
Mande, 2018). SCFA from prebiotic metabolism 
strengthens the gastrointestinal association with 
lymphoid tissue (FALT) (Schley & Field, 2002). 
Hence, administering prebiotics and probiotics 
to COVID-19 patients can help to improve the 
intestinal dysbiosis conditions, thereby accelerating 
the healing process. Prebiotics can help fight 
respiratory infections as proven by Trompette et 
al. in their research, where the subject mice fed 
with prebiotic dietary fi ber experienced an increase 
in macrophage and a reduction in the production 
of chemokine CXCL1, which causes neutrophil 
increases in the lungs, as well as adding the CD8+ 
cell functions (Trompette et al., 2018).

An RCT involving 94 premature babies 
revealed that the intervention of mixed prebiotic 
galactooligosaccharide and polydextrose (1:1) or 
probiotic Lactobacillus rhamnosus GG reduces 
the incidence of respiratory tract infections by 
2-30 times compared to placebo (Guillemard et al., 
2010). Additionally, the administrations of synbiotic 
Pediococcus pentosaceus 5-33:3, Leuconostoc 
mesenteroides 32-77:1, L. paracasei ssp. paracasei 
19, L. plantarum 2,362 in conjunction with inulin, 
oat bran, pectin, and resistant starch in critically ill 
patients with a ventilator are proven to decrease 
the rates of infections, sepsis, SIRS, length of 
treatment, the period of using a ventilator, and 
mortality (Kotzampassi et al., 2006).

In Indonesia, prebiotic are mostly can be 
found in tuber crops, like gembili, yam, dahlia 
rooth, potato, sweet potato, and cassava. Prebiotic 
also can be found in chicory, artichoke, and garlic 
(Zubaidah & Akhadiana, 2013).

CONCLUSION

Enhancing immune system during COVID-
19 pandemic is necessary. The use of zinc during 
COVID-19 infection can give better result 
of treatment. Minerals with anti-inflammatory 

and antioxidant properties can help to reduce 
inflammatory response during COVID-19 
infection. The usage of synbiotic also can help 
enhance immune system by balancing intestinal 
microecology and microbiota balance so it can 
help preventing the infection of COVID-19. 
However, the safety and effi  cacy of nutritional 
supplementation, including minerals and synbiotic 
as adjunctive therapy for COVID-19 patient needs 
further studies.
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