The role of stem cells in obstetrics and gynecology: A systematic review
Downloads
HIGHLIGHTS
- Stem cell technology has various roles in the field of obstetrics and gynecology, including fertility study as well as tissue damage repair.
- Safety profile of stem cells technology use in human still need to be assessed.
ABSTRACT
Objective: This study aimed to review the role of stem cells in obstetrics and gynecology.
Materials and Methods: This review used several databases, the PubMed, Wiley Online Library, and ScienceDirect to search open access original and review articles in English related to stem cells, obstetrics, and gynecology in the last 10 years. The results were analyzed qualitatively.
Results: Out of 1,016 records identified through database searching, fifteen articles were eligible for review. Several articles reported the role of stem cells in endometrium repair. Stem cell can also increase endometrial thickness and increase the likelihood of pregnancy. In the field of gynecology, stem cells can be used as potential treatment for stress urinary incontinence and anal incontinence. Despite of all those abilities, stem cells might have errors, such as chromosomal abnormalities, epigenetic and genetic defect, which could potentially turn the stem cells into tumor initiating cells (TICs), thus can contribute to ectopic growth of endometrium (endometriosis), leiomyoma, leiomyosarcomas, and adeno-myosis.
Conclusion: Stem cell technology has various roles in the field of obstetrics and gynecology, including fertility study as well as tissue damage repair. However, in-depth research to ensure the safety profile of stem cells technology use in human is necessary.
Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85 (1):3-10. doi: 10.1159/000345615. Epub 2012 Dec 13. PMID: 23257690.
Dulak J, Szade K, Szade A, et al. Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol. 2015;62(3):329-37. doi: 10.18388/ abp.2015_1023. Epub 2015 Jul 22. PMID: 26200 199.
Charitos IA, Ballini A, Cantore S, et al. Stem cells: A historical review about biological, religious, and ethical issues. Stem Cells Int. 2021;2021:9978837. doi: 10.1155/2021/9978837. PMID: 34012469; PMCID: PMC8105090.
Nawab K, Bhere D, Bommarito A, et al. Stem cell therapies: A way to promising cures. Cureus. 2019;11(9):e5712. doi: 10.7759/cureus.5712. PMID: 31720180; PMCID: PMC6823091.
Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv. 2018;36(4):1111-26. doi: 10.1016/j.biotechadv. 2018.03.011. Epub 2018 Mar 18. PMID: 29563048.
Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: A review of the literature and future directions. Regen Ther. 2020;14:136-53. doi: 10.1016/j.reth.2020.01.004. PMID: 32110683; PMCID: PMC7033303.
Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68. doi: 10.1186/s13287-019-1165-5. PMID: 30808416; PMCID: PMC6390367.
Edessy M, Hosni H, Shady Y, et al. Autologous stem cells therapy, The first baby of idiopathic premature ovarian failure. Acta Medica Int. 2016;3(1):19-23. doi: 10.5530/ami.2016.1.7.
He Y, Chen D, Yang L, et al. The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem Cell Res Ther. 2018;9(1):263. doi: 10.1186/s13287-018-1008-9. PMID: 30286808; PMCID: PMC6172726.
Azizi R, Aghebati-Maleki L, Nouri M, et al. Stem cell therapy in Asherman syndrome and thin endometrium: Stem cell- based therapy. Biomed Pharmacother. 2018;102:333-43. doi: 10.1016/j. biopha.2018.03.091. Epub 2018 Mar 22. PMID: 29571018.
Hu J, Song K, Zhang J, et al. Effects of menstrual blood"‘derived stem cells on endometrial injury repair. Mol Med Rep. 2019;19(2):813-20. doi: 10.3892/mmr.2018.9744. Epub 2018 Dec 12. PMID: 30569163; PMCID: PMC6323210.
Pratama G. The role of stem cells in obstetrics and gynecology. Indones J Obstet Gynecol. 2020;8 (1):3–4. doi: 10.32771/inajog.v8i1.1295.
Lane FL, Jacobs S. Stem cells in gynecology. Am J Obstet Gynecol. 2012;207(3):149-56. doi: 10.1016/ j.ajog.2012.01.045. Epub 2012 Feb 9. PMID: 22464292.
Hanna CB, Hennebold JD. Ovarian germline stem cells: an unlimited source of oocytes? Fertil Steril. 2014;101(1):20-30. doi: 10.1016/j.fertnstert.2013. 11.009. PMID: 24382341; PMCID: PMC3926438.
Mutlu L, Hufnagel D, Taylor HS. The endometrium as a source of mesenchymal stem cells for regenerative medicine. Biol Reprod. 2015;92(6) :138. doi: 10.1095/biolreprod.114.126771. Epub 2015 Apr 22. PMID: 25904012; PMC ID: PMC 4652610.
Dziadosz M, Basch RS, Young BK. Human amniotic fluid: a source of stem cells for possible therapeutic use. Am J Obstet Gynecol. 2016; 214(3):321-7. doi: 10.1016/j.ajog.2015.12.061. Epub 2016 Jan 6. PMID: 26767797.
James JL. Stem cells and pregnancy disorders: From pathological mechanisms to therapeutic horizons. Semin Reprod Med. 2016;34(1):17-26. doi: 10.1055/s-0035-1570030. Epub 2015 Dec 22. PMID: 26696275.
Hamid AA, Joharry MK, Mun-Fun H, et al. Highly potent stem cells from full-term amniotic fluid: A realistic perspective. Reprod Biol. 2017;17(1):9-18. doi: 10.1016/j.repbio.2017.02.001. Epub 2017 Mar 3. PMID: 28262444.
Mohamed SA, Shalaby SM, Abdelaziz M, et al. Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reprod Sci. 2018;25(1):51-63. doi: 10.1177/193371 9117699705. Epub 2017 May 1. PMID: 28460567; PMCID: PMC6344979.
Santamaria X, Mas A, Cervelló I, et al. Uterine stem cells: from basic research to advanced cell therapies. Hum Reprod Update. 2018;24(6):673-93. doi: 10.1093/humupd/dmy028. PMID: 30239705.
Sarma UC, Findlay JK, Hutt KJ. Oocytes from stem cells. Best Pract Res Clin Obstet Gynaecol. 2019;55:14-22. doi: 10.1016/j.bpobgyn.2018.07. 006. Epub 2018 Jul 27. PMID: 30120061.
El Sabeh M, Afrin S, Singh B, et al. Uterine stem cells and benign gynecological disorders: Role in pathobiology and therapeutic implications. Stem Cell Rev Rep. 2021;17(3):803-20. doi: 10.1007/s 12015-020-10075-w. Epub 2020 Nov 5. PMID: 33155150; PMCID: PMC8096869.
Zhang Y, Ma Y, Chen J, et al. Mesenchymal stem cell transplantation for vaginal repair in an ovariectomized rhesus macaque model. Stem Cell Res Ther. 2021;12(1):406. doi: 10.1186/s13287-021-02488-2. PMID: 34266489; PMCID: PMC 8281669.
Zhang ZY, Teoh SH, Hui JH, et al. The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application. Biomaterials. 2012;33(9):2656-72. doi: 10.1016/j. biomaterials.2011.12.025. Epub 2012 Jan 2. PMID: 22217806.
Portmann-Lanz CB, Schoeberlein A, Huber A, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuro-regeneration. Am J Obstet Gynecol. 2006;194(3) :664-73. doi: 10.1016/j.ajog.2006.01.101. PMID: 16522395.
Cananzi M, De Coppi P. CD117(+) amniotic fluid stem cells: state of the art and future perspectives. Organogenesis. 2012;8(3):77-88. doi: 10.4161/org. 22426. Epub 2012 Jul 1. PMID: 23037870; PMC ID: PMC3527320.
Campagnoli C, Fisk N, Overton T, et al. Circulating hematopoietic progenitor cells in first trimester fetal blood. Blood. 2000;95(6):1967-72. PMID: 10706862.
Robin C, Bollerot K, Mendes S, et al. Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell. 2009;5(4):385-95. doi: 10.1016/j.stem.2009.08.020. PMID: 19796619; PMCID: PMC2812802.
Chan J, Kumar S, Fisk NM. First trimester embryo-fetoscopic and ultrasound-guided fetal blood sampling for ex vivo viral transduction of cultured human fetal mesenchymal stem cells. Hum Reprod. 2008;23(11):2427-37. doi: 10.1093/humrep/den 302. Epub 2008 Aug 6. PMID: 18687673.
Zhang ZY, Teoh SH, Chong MS, et al. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells. 2009;27(1) :126-37. doi: 10.1634/stemcells.2008-0456. PMID: 18832592.
Guillot PV, Gotherstrom C, Chan J, et al. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells. 2007;25(3):646-54. doi: 10.1634/stemcells.2006-0208. Epub 2006 Nov 22. PMID: 17124009.
Chan J, O'Donoghue K, Gavina M, et al. Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells. 2006;24(8):1879-91. doi: 10.1634/stemcells.2005-0564. Epub 2006 May 4. PMID: 16675596.
Chong MS, Chan J. Lentiviral vector transduction of fetal mesenchymal stem cells. Methods Mol Biol. 2010;614:135-47. doi: 10.1007/978-1-60761-533-0_9. PMID: 20225041.
Götherström C. Immunomodulation by multipotent mesenchymal stromal cells. Transplantation. 2007;84(1 Suppl):S35-7. doi: 10.1097/01.tp.00002 69200.67707.c8. PMID: 17632411.
Moise KJ Jr. Umbilical cord stem cells. Obstet Gynecol. 2005;106(6):1393-407. doi: 10.1097/01. AOG.0000188388.84901.e4. PMID: 16319269.
Knudtzon S. In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood. 1974;43(3):357-61. PMID: 4811820.
Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA. 1989;86(10):3828-32. doi: 10.1073/pnas.86.10.3828. PMID: 2566997; PMCID: PMC287234.
Forraz N, Pettengell R, Deglesne PA, et al. AC133+ umbilical cord blood progenitors demons-trate rapid self-renewal and low apoptosis. Br J Haematol. 2002;119(2):516-24. doi: 10.1046/j. 1365-2141.2002.03828.x. PMID: 12406095.
Forraz N, Pettengell R, McGuckin CP. Character-ization of a lineage-negative stem-progenitor cell population optimized for ex vivo expansion and enriched for LTC-IC. Stem Cells. 2004;22(1):100-8. doi: 10.1634/stemcells.22-1-100. PMID: 1468 8396.
Arutyunyan I, Elchaninov A, Makarov A, et al. Umbilical cord as prospective source for mesen-chymal stem cell-based therapy. Stem Cells Int. 2016;2016:6901286. doi: 10.1155/2016/6901286. Epub 2016 Aug 29. PMID: 27651799; PMCID: PMC5019943.
Forraz N, McGuckin CP. The umbilical cord: a rich and ethical stem cell source to advance regenerative medicine. Cell Prolif. 2011;44 Suppl 1(Suppl 1):60-9. doi: 10.1111/j.1365-2184.2010.00729.x. PMID: 21481046; PMCID: PMC6495455.
Basford C, Forraz N, Habibollah S, et al. The cord blood separation league table: a comparison of the major clinical grade harvesting techniques for cord blood stem cells. Int J Stem Cells. 2010;3(1):32-45. doi: 10.15283/ijsc.2010.3.1.32. PMID: 24855539; PMCID: PMC4022688.
Basford C, Forraz N, Habibollah S, et al. Umbilical cord blood processing using Prepacyte-CB increases haematopoietic progenitor cell availability over conventional Hetastarch separation. Cell Prolif. 2009;42(6):751-61. doi: 10.1111/j.1365-2184.2009.00646.x. Epub 2009 Sep 15. PMID: 19758367; PMCID: PMC6496139.
Basford C, Forraz N, McGuckin C. Optimized multiparametric immunophenotyping of umbilical cord blood cells by flow cytometry. Nat Protoc. 2010;5(7):1337-46. doi: 10.1038/nprot.2010.88. Epub 2010 Jun 24. PMID: 20595961.
Rocha V, Labopin M, Sanz G, et al.; Acute Leukemia Working Party of European Blood and Marrow Transplant Group; Eurocord-Netcord Registry. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351(22):2276-85. doi: 10.1056/NEJMoa041469. PMID: 1556 4544.
Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122(4):491-8. doi: 10.1182/blood-2013-02-453175. Epub 2013 May 14. PMID: 23673863; PMCID: PMC3952633.
Rocha V, Wagner JE Jr, Sobocinski KA, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med. 2000; 342(25):1846-54. doi: 10.1056/NEJM200006223 422501. PMID: 10861319.
Sun D, Jiang Z, Chen Y, et al. MiR-455-5p upregulation in umbilical cord mesenchymal stem cells attenuates endometrial injury and promotes repair of damaged endometrium via Janus kinase/ signal transducer and activator of transcription 3 signaling. Bioengineered. 2021;12(2):12891-904. doi: 10.1080/21655979.2021.2006976. PMID: 34784837; PMCID: PMC8810187.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.