Current preeclampsia prediction model and biomarker
Downloads
Preeclampsia (PE) is a serious hypertensive disorder that occurs during pregnancy and is often accompanied by proteinuria (excessive protein in the urine), posing significant risks to both maternal and neonatal health worldwide. PE is a leading cause of maternal and neonatal morbidity and mortality and is notably challenging to predict due to its unpredictable nature and steadily rising incidence rates globally. As a result, substantial efforts have been directed toward developing predictive models and identifying biomarkers to assess the risk and progression of PE. However, existing models vary widely in their design, methodologies, and efficacy. Current prediction models recommended by notable organizations, including the National Institute for Health and Care Excellence (NICE), the American College of Obstetricians and Gynecologists (ACOG), the Fetal Medicine Foundation (FMF), and the World Health Organization (WHO), generally involve screening based on maternal characteristics and known risk factors. These include parameters such as maternal age, body mass index (BMI), number of pregnancies and births, blood pressure, and uterine arterial pulse index (UtA-PI). Additionally, biomarkers like mean arterial pressure (MAP), UtA-PI, and the ratio of soluble fms-like tyrosine kinase-1 to placental growth factor (sFlt-1/PlGF) are employed to improve predictive accuracy. Despite the diversity of predictive models and biomarkers, there is no consensus on the optimal model for PE prediction, largely due to the limitations in comparative studies and the challenges involved in cross-study comparisons. However, literature suggests that the FMF model demonstrates superior detection capacity compared to other predictive models.
Hypertension in pregnancy: diagnosis and management. London: National Institute for Health and Care Excellence (NICE); 2019 Jun 25. (NICE Guideline, No. 133.) Available from: https://www. ncbi.nlm.nih.gov/books/NBK546004/
Ghulmiyyah L, Sibai B. Maternal mortality from preeclampsia/eclampsia. Semin Perinatol. 2012;36 (1):56-9. doi: 10.1053/j.semperi.2011.09.011. PM ID: 22280867.
Say L, Chou D, Gemmill A, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2(6):e323-33. doi: 10.1016/ S2214-109X(14)70227-X. Epub 2014 May 5. PMID: 25103301.
WHO. Trends in Maternal Mortality: 1990-2013. Estimates by WHO, UNICEF, UNFPA, The World Bank and the United Nations Population Division. World Heal Organ [Internet]. 2014;56. Available from: https://www.sciencedirect.com/science/article/pii/S2214109X1470227X?via%3Dihub
Jhee JH, Lee S, Park Y, et al. Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One. 2019; 14(8):e0221202. doi: 10.1371/journal.pone.0221 202. PMID: 31442238; PMCID: PMC6707607.
Pacagnella RC, Cecatti JG, Parpinelli MA, et al.; Brazilian Network for the Surveillance of Severe Maternal Morbidity study group. Delays in receiving obstetric care and poor maternal outcomes: results from a national multicentre cross-sectional study. BMC Pregnancy Childbirth. 2014;14:159. doi: 10.1186/1471-2393-14-159. PMID: 24886330; PMCID: PMC4016777.
Abalos E, Cuesta C, Grosso AL, et al. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):1-7. doi: 10.1016/j.ejogrb.2013. 05.005. Epub 2013 Jun 7. PMID: 23746796.
Mayrink J, Costa ML, Cecatti JG. Preeclampsia in 2018: Revisiting concepts, physiopathology, and prediction. ScientificWorldJournal. 2018;2018:626 8276. doi: 10.1155/2018/6268276. PMID: 30622 442; PMCID: PMC6304478.
Rolnik DL, Wright D, Poon LCY, et al. ASPRE trial: performance of screening for preterm pre-eclampsia. Ultrasound Obstet Gynecol. 2017;50(4): 492-5. doi: 10.1002/uog.18816. Epub 2017 Aug 24. Erratum in: Ultrasound Obstet Gynecol. 2017; 50(6):807. doi: 10.1002/uog.18950. PMID: 2874 1785.
Jeyabalan A. Epidemiology of preeclampsia: impact of obesity. Nutr Rev. 2013;71 Suppl 1(01):S18-25. doi: 10.1111/nure.12055. PMID: 24147919; PMCID: PMC3871181.
Saleem S, McClure EM, Goudar SS, et al.; Global Network Maternal Newborn Health Registry Study Investigators. A prospective study of maternal, fetal and neonatal deaths in low- and middle-income countries. Bull World Health Organ. 2014;92(8) :605-12. doi: 10.2471/BLT.13.127464. Epub 2014 Jun 5. PMID: 25177075; PMCID: PMC4147405.
Mol BWJ, Roberts CT, Thangaratinam S, et al. Pre-eclampsia. Lancet. 2016;387(10022):999-1011. doi: 10.1016/S0140-6736(15)00070-7. Epub 2015 Sep 2. PMID: 26342729.
Nasiri M, Faghihzadeh S, Alavi Majd H, et al. Longitudinal discriminant analysis of hemoglobin level for predicting preeclampsia. Iran Red Crescent Med J. 2015;17(3):e19489. doi: 10.5812/ ircmj.19489. PMID: 26019901; PMCID: PMC444 1775.
Bokslag A, van Weissenbruch M, Mol BW, et al. Preeclampsia; short and long-term consequences for mother and neonate. Early Hum Dev. 2016;102:47-50. doi: 10.1016/j.earlhumdev.2016. 09.007. Epub 2016 Sep 20. PMID: 27659865.
Ives CW, Sinkey R, Rajapreyar I, et al. Pre-eclampsia-pathophysiology and clinical present-ations: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;76(14):1690-702. doi: 10.1016/j.jacc. 2020.08.014. PMID: 33004135.
Phipps E, Prasanna D, Brima W, et al. Preeclampsia: Updates in pathogenesis, definitions, and guidelines. Clin J Am Soc Nephrol. 2016;11(6):1102-13. doi: 10.2215/CJN. 12081115. Epub 2016 Apr 19. PMID: 27094609; PMCID: PMC4891761.
Tranquilli AL, Dekker G, Magee L, et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: A revised statement from the ISSHP. Pregnancy Hypertens. 2014;4(2):97-104. doi: 10.1016/j.preghy.2014.02. 001. Epub 2014 Feb 15. PMID: 26104417.
Mannino A, Sarapis K, Moschonis G. The effect of maternal overweight and obesity pre-pregnancy and during childhood in the development of obesity in children and adolescents: A systematic literature review. Nutrients. 2022;14(23):5125. doi: 10.3390/ nu14235125. PMID: 36501155; PMCID: PMC973 9272.
Marchi J, Berg M, Dencker A, et al. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev. 2015;16(8):621-38. doi: 10.1111/obr. 12288. Epub 2015 May 28. PMID: 26016557.
Langley-Evans SC, Pearce J, Ellis S. Overweight, obesity and excessive weight gain in pregnancy as risk factors for adverse pregnancy outcomes: A narrative review. J Hum Nutr Diet. 2022;35(2):250-64. doi: 10.1111/jhn.12999. Epub 2022 Mar 20. PMID: 35239212; PMCID: PMC9311414.
Barnhart KT. Assisted reproductive technologies and perinatal morbidity: interrogating the association. Fertil Steril. 2013;99(2):299-302. doi: 10.1016/j.fertnstert.2012.12.032. PMID: 23375143; PMCID: PMC3564059.
Thomopoulos C, Salamalekis G, Kintis K, et al. Risk of hypertensive disorders in pregnancy following assisted reproductive technology: overview and meta-analysis. J Clin Hypertens (Greenwich). 2017;19(2):173-83. doi: 10.1111/jch. 12945. Epub 2016 Nov 7. PMID: 28071857; PMCID: PMC8031300.
Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet Gynecol. 2020;135(6):e237-e260. doi: 10.1097/AOG.00000 00000003891. PMID: 32443079.
De Kat AC, Hirst J, Woodward M, et al. Prediction models for preeclampsia: A systematic review. Pregnancy Hypertens. 2019;16:48-66. doi: 10.1016/ j.preghy.2019.03.005. Epub 2019 Mar 11. PMID: 31056160.
Benkő Z, Wright A, Rehal A, et al. Prediction of pre-eclampsia in twin pregnancy by maternal factors and biomarkers at 11-13 weeks' gestation: data from EVENTS trial. Ultrasound Obstet Gynecol. 2021;57(2):257-65. doi: 10.1002/uog. 23531. PMID: 33142361.
Helou A, Walker S, Stewart K, et al. Management of pregnancies complicated by hypertensive disorders of pregnancy: Could we do better? Aust N Z J Obstet Gynaecol. 2017 57(3):253-9. doi: 10.1111/ajo.12499. Epub 2016 Jul 11. PMID: 27396975.
Tan MY, Wright D, Syngelaki A, et al. Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: results of SPREE. Ultrasound Obstet Gynecol. 2018;51(6): 743-50. doi: 10.1002/uog.19039. Epub 2018 Mar 14. PMID: 29536574.
Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122-31. doi: 10.1097/01. AOG.0000437382.03963.88. PMID: 24150027.
LeFevre ML; U.S. Preventive Services Task Force. Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;161(11):819-26. doi: 10.7326/M14-1884. PMID: 25200125.
Stepan H, Hund M, Andraczek T. Combining biomarkers to predict pregnancy complications and redefine preeclampsia: The angiogenic-placental syndrome. Hypertension. 2020;75(4): 918-26. doi: 10.1161/HYPERTENSIONAHA.119. 13763. Epub 2020 Feb 17. PMID: 32063058; PMC ID: PMC7098437.
Duhig KE, Shennan AH. Antiplatelet agents for the prevention of pre-eclampsia. Semin Thromb Hemost. 2011;37(2):137-40. doi: 10.1055/s-0030-1270340. Epub 2011 Mar 2. PMID: 21370214.
World Health Organization. Calcium supplement-ation before pregnancy prevents pre-eclampsia and its complications [Internet]. 2020. 48 p. Available from: https://apps.who.int/iris/bitstream/handle/ 10665/331787/9789240003118-eng.pdf?ua=1
Chaemsaithong P, Sahota DS, Poon LC. First trimester preeclampsia screening and prediction. Am J Obstet Gynecol. 2022;226(2S):S1071-97.e2. doi: 10.1016/j.ajog.2020.07.020. Epub 2020 Jul 16. PMID: 32682859.
ACOG Committee Opinion No. 743: Low-dose aspirin use during pregnancy. Obstet Gynecol. 2018;132(1):e44-e52. doi: 10.1097/AOG.00000000 00002708. PMID: 29939940.
Moungmaithong S, Wang X, Tai AST, et al. First trimester screening for preeclampsia: An Asian perspective. Maternal-Fetal Medicine 3(2):p 116-23, April 2021. | doi: 10.1097/FM9.000000000000 0101
Kenny LC, Black MA, Poston L, et al. Early pregnancy prediction of preeclampsia in nulliparous women, combining clinical risk and biomarkers: the Screening for Pregnancy Endpoints (SCOPE) international cohort study. Hypertension. 2014; 64(3):644-52. doi: 10.1161/HYPERTENSION AHA.114.03578. PMID: 25122928.
O'Gorman N, Wright D, Poon LC, et al. Accuracy of competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks' gestation. Ultrasound Obstet Gynecol. 2017;49(6):751-5. doi: 10.1002/uog.17399. Epub 2017 May 14. Erratum in: Ultrasound Obstet Gynecol. 2017 Dec;50(6):807. doi: 10.1002/uog. 18950. PMID: 28067011.
Cohen JL, Smilen KE, Bianco AT, et al. Predictive value of combined serum biomarkers for adverse pregnancy outcomes. Eur J Obstet Gynecol Reprod Biol. 2014;181:89-94. doi: 10.1016/j.ejogrb.2014. 07.018. Epub 2014 Jul 31. PMID: 25129153.
Bækgaard Thorsen LH, Bjørkholt Andersen L, Birukov A, et al. Prediction of birth weight small for gestational age with and without preeclampsia by angiogenic markers: an Odense Child Cohort study. J Matern Fetal Neonatal Med. 2020;33(8): 1377-84. doi: 10.1080/14767058.2018.1519536. Epub 2018 Sep 25. PMID: 30173595.
Al-Rubaie Z, Askie LM, Ray JG, et al. The performance of risk prediction models for pre-eclampsia using routinely collected maternal characteristics and comparison with models that include specialised tests and with clinical guideline decision rules: a systematic review. BJOG. 2016;123(9):1441-52. doi: 10.1111/1471-0528.14029. Epub 2016 May 26. Erratum in: BJOG. 2018 Apr;125(5):635. doi: 10.1111/1471-0528.15155. PMID: 27225348.
Stepan H, Hund M, Andraczek T. Combining biomarkers to predict pregnancy complications and redefine preeclampsia: The angiogenic-placental syndrome. Hypertension. 2020;75(4): 918-26. doi: 10.1161/HYPERTENSIONAHA.119. 13763. Epub 2020 Feb 17. PMID: 32063058; PMCID: PMC7098437.
Verlohren S, Brennecke SP, Galindo A, et al. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens. 2022;27:42-50. doi: 10.1016/j.preghy. 2021.12.003. Epub 2021 Dec 8. PMID: 34915395.
MacDonald TM, Walker SP, Hannan NJ, et al. Clinical tools and biomarkers to predict preeclampsia. EBioMedicine. 2022;75:103780. doi: 10.1016/j.ebiom.2021.103780. Epub 2021 Dec 23. PMID: 34954654; PMCID: PMC8718967.
Widmer M, Cuesta C, Khan KS, et al. Accuracy of angiogenic biomarkers at ⩽20weeks' gestation in predicting the risk of pre-eclampsia: A WHO multicentre study. Pregnancy Hypertens. 2015;5(4): 330-8. doi: 10.1016/j.preghy.2015.09.004. Epub 2015 Sep 21. PMID: 26597750.
Baschat AA. First-trimester screening for pre-eclampsia: moving from personalized risk prediction to prevention. Ultrasound Obstet Gynecol. 2015;45(2):119-29. doi: 10.1002/uog. 14770. PMID: 25627093.
Scazzocchio E, Figueras F, Crispi F, et al. Performance of a first-trimester screening of preeclampsia in a routine care low-risk setting. Am J Obstet Gynecol. 2013;208(3):203.e1-203.e10. doi: 10.1016/j.ajog.2012.12.016. Epub 2012 Dec 12. PMID: 23246313.
Thangaratinam S, Allotey J, Marlin N, et al. Development and validation of Prediction models for Risks of complications in Early-onset Pre-eclampsia (PREP): a prospective cohort study. Health Technol Assess. 2017;21(18):1-100. doi: 10.3310/hta21180. PMID: 28412995; PMCID: PMC5410633.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.