Formative & Reflective Measurement Models
Downloads
This research paper explores the distinctions between reflective and formative measurement models. The two commonly used methodologies in social science research for measuring latent variables. Reflective models believe that a latent variable causes its indicators, whereas formative models see the indicators contributing to the latent variable. The research paper explores each model's theoretical foundation focusing on their applicability in research domains such as marketing, psychology, and organizational behavior. In addition, the research paper analyzes these two models help in defining relationships in observable variable & latent variable such a nature of construct, causality & type of indicators. The research paper also focuses on the statistical approaches used to evaluate both models, including factor analysis, structural equation modeling, and path analysis etc. The Research paper will help researchers in identifying measurement models to improve the insights in identifying the model relationship among measurable & latent variable, and way to define construct validity and related phenomena.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94. https://doi.org/10.1007/BF02723327
Baumgartner, H., & Homberg, C. (1996). Applications of structural equation modeling in marketing and consumer research: A review. International Journal of Research in Marketing, 13(2), 139–161.
Bagozzi, R. P. (2011). Measurement and meaning in information systems and organizational research: Methodological and philosophical foundations. MIS Quarterly, 35(2), 261–292. https://doi.org/10.2307/23044044
Bearden, W. O., & Netemeyer, R. G. (1999). Handbook of marketing scales: Multi-item measures for marketing and consumer behavior research (2nd ed.). Sage Publications.
Bergvist, L., & Rossiter, J. R. (2007). The predictive validity of multi-item versus single-item measures of the same constructs. Journal of Marketing Research, 44(22), 175–184.
Blalock, H. M. (1982). Conceptualization and measurement in the social sciences. Sage.
Blotenberg, A. (2022). Formative and reflective models in construct measurement. International Journal of Research in Organizational Behavior, 12(4), 75–90.
Bollen, K. A., & Diamantopoulos, A. (2017). In defense of causal-formative indicators: A minority report. Psychological Methods, 22(3), 581–596.
Bollen, K. A., & Lennox, R. (1991). Conventional wisdom in measurement: A structural equation perspective. Psychological Bulletin, 110(2), 305–314.
Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110(2), 305-314.
Bollen, K. A., & Ting, K.-F. (2000). A tetrad test for causal indicators. Psychological Methods, 5(1), 3–22.
Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110, 203–219.
Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2004). The concept of validity. Psychological Review, 111(4), 1061–1071.
Bruner II, G. C., James, K. E., & Hensel, P. J. (2001). Marketing scales handbook: A compilation of multi-item measures for consumer behavior & advertising (Vol. 3). American Marketing Association.
Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–336). Lawrence Erlbaum Associates.
Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. In R. H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 307–341). Sage.
Chin, W. W., & Todd, P. A. (1995). On the use, usefulness, and ease of use of structural equation modeling in MIS research: A note of caution. MIS Quarterly, 26(2/4), 237–246.
Churchill, G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16(1), 64–73.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-339.
DeVellis, R. F. (1991). Scale development: Theories and applications. Newbury Park, CA: Sage.
Diamantopoulos, A., & Siguaw, J. A. (2006). Formative versus reflective indicators in organizational measure development: A comparison and empirical illustration. British Journal of Management, 17(4), 263-282.
Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: An alternative to scale development. Journal of Marketing Research, 38(5), 269-277.
Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between constructs and measures. Psychological Methods, 5(2), 155.
Finn, A., & Kayande, U. (2005). How fine is C-OAR-SE? A generalizability theory perspective on Rossiter's procedure. International Journal of Research in Marketing, 22(1), 11-21.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017a). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Sage Publications.
Hair, J. F., Jr., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R. Springer. https://link.springer.com/book/10.1007/978-3-030-80519-7
Hair, J. F., Jr., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM: Updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 1(2), 107-123.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed, a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24.
Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414-433.
Hanafiah, M. H. (2020). Formative vs. reflective measurement model: Guidelines for structural equation modeling research. International Journal of Analysis and Applications, 18(5), 876-889.
Heise, D. R. (1972). Employing nominal variables, induced variables, and block variables in path analysis. Sociological Methods and Research, 1, 147-173.
Henseler, J. (2017). Bridging design and behavioral research with variance-based structural equation modeling. Journal of Advertising, 46(1), 178–192.
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277-319. https://doi.org/10.1108/S1474-7979(2009)0000020014
Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195-204. https://doi.org/10.1002/(SICI)1097-0266(199902)
Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2), 199–218.
Kluegel, J. R., Singleton, R., & Starnes, C. E. (1977). Subjective class identification: A multiple indicators approach. American Sociological Review, 42, 599-611.
MacCallum, R. C., & Browne, M. W. (1993). The use of causal indicators in covariance structure models: Some practical issues. Psychological Bulletin, 114, 533-541.
MacKenzie, S. B., Podsakoff, P. M., & Podsakoff, N. P. (2011). Construct measurement and validation procedures in MIS and behavioral research: Integrating new and existing techniques. MIS Quarterly, 35(2), 293–334.
Netemeyer, R. G., Bearden, W. O., & Sharma, S. (2003). Scaling procedures: Issues and applications. Sage Publications.
Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw-Hill.
Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information systems research. MIS Quarterly, 31, 623-656.
Podsakoff, P. M., MacKenzie, S. B., Podsakoff, N. P., & Lee, J. Y. (2003). The mismeasure of man(agement) and its implications for leadership research. The Leadership Quarterly, 14, 615-656.
Rossiter, J. R. (2002). The C-OAR-SE procedure for scale development in marketing. International Journal of Research in Marketing, 19(4), 1-31.
Rossiter, J. R. (2005). Reminder: A horse is a horse. International Journal of Research in Marketing, 22(1), 23-25.
Sarstedt, M., Hair, J. F., Cheah, J. H., Becker, J. M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian Marketing Journal, 27(3), 197–211.
Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial Least Squares Structural Equation Modeling: A Useful Tool for Family Business Researchers. Journal of Family Business Strategy, 12(4), 100374.
Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., & Hair, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105–115.
Sharma, A. (2022). Constructed measures and causal inference: Towards a new model of measurement for psychosocial constructs. Epidemiology, 33(1), 141-151.
Shook, C. L., Ketchen, J. D., Hult, G. T. M., & Kacmar, M. K. (2004). An assessment of the use of structural equation modeling in strategic management research. Strategic Management Journal, 25(4), 397-404.
Sinkovics, R. R. (Ed.). (2009). New challenges to international marketing. Emerald.
Spector, P. E. (1992). Summated rating scale construction: An introduction. Sage Publications.
Trochim, W. M. K. (2007). Research methods knowledge base. Retrieved from http://www.socialresearchmethods.net/kb/index.php
Tyler, J., & Vander, W. (2020). Constructed measures and causal inference: Towards a new model of measurement for psychosocial constructs. arXiv: Methodology. https://arxiv.org/pdf/2007.00520
UNDP (2006). Human Development Report 2006: Beyond Scarcity: Power, Poverty, and the Global Water Crisis. United Nations Development Programme (UNDP).
Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the qualitative-quantitative divide: Guidelines for conducting mixed methods research in information systems, MIS Quarterly, 37(1), 21-54. DOI: 10.25300/MISQ/2013/37.1.02
Weele, T. (2020). Reflective measurement models and their applications. Measurement in Social Science, 45(3), 156-167.
Wilcox, J. B., Howell, R. D., & Breivik, E. (2008). Questions about formative measurement. Journal of Business Research, 61(1
Copyright (c) 2025 Neha Sharma, N.P Singh

This work is licensed under a Creative Commons Attribution 4.0 International License.