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Abstract
Introduction: Keratoconus is a degenerative corneal disorder leading to vision 
impairment. It is important to detect it early to prevent its progression by corneal cross-
linking (CXL). Keratoconus is diagnosed using videokeratography and Scheimpflug 
tomography, which provide valuable data on the corneal surface. However, distinguishing 
keratoconus from normal variations remains challenging. Recent advances in artificial 
intelligence (AI) offer promising improvements in detecting subtle corneal changes, 
enhancing keratoconus detection and diagnosis. Purpose: To analyze AI as a diagnostic 
modality for keratoconus by calculating the pooled sensitivity and specificity to evaluate 
its accuracy. Methods: Databases involved PubMed, Scopus, Google Scholar, Embase, and 
Science Direct, from 2018 to March 2024. Also, to include unpublished works, the grey 
literature was searched, using the OpenGrey repository. Studies were included when they 
met the inclusion criteria. Results: We involved a total of 19 studies in this meta-analysis. 
The pooled sensitivity for detecting keratoconus was 95% confidence interval (CI) (91% 
to 98%), with a pooled specificity of 98% CI (96% to 99%). Additionally, the random forest 
model had a pooled sensitivity of 98.11% (CI, 96.77% to 99.44%), with a pooled specificity 
of 99% (CI, 98.24% to 99.76%). On the other hand, the convolutional neural network (CNN) 
model had a pooled sensitivity of 89.73% CI (79.77% to 99.69%), with a pooled specificity 
of 95.27% CI (91.88% to 98.66%). Conclusion: The results confirmed the reliability of 
different AI models in diagnosing keratoconus, especially the random forest model. This 
is important, as the early and accurate detection of keratoconus provides opportunities 
to reduce risk factors and offer treatments, including CXL, which can potentially slow its 
progression and improve the patient’s quality of life.
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Introduction
Keratoconus is a degenerative disorder characterized by progressive corneal 

thinning, myopia, irregular astigmatism, and scarring, which can significantly 

impact a patient’s quality of life.[1] Early and accurate detection of keratoconus 

is crucial for mitigating risk factors and providing treatments that slow its 

progression.[1] Also, the detection of early keratoconus has become more 

important due to the availability of corneal cross-linking (CXL).[2] It is challenging 

to detect it early due to minor initial changes that may be overlooked during 

routine clinical exams.[1] Videokeratography and Scheimpflug tomography are 

standard methods that provide valuable data on the anterior and posterior 

corneal surfaces. However, detecting keratoconus from normal eyes is difficult 

based on this data alone.[3] Machine learning (ML) and artificial intelligence (AI) 

have provided new opportunities for the early detection of keratoconus.

AI models, deep learning (DL) algorithms like convolutional neural networks 

(CNNs), can process complex corneal tomography and topography data.[1]

These models have been used to improve the diagnosis and management of 

keratoconus.[4] Due to the challenges in diagnosing keratoconus, scholars have 

https://e-journal.unair.ac.id/VSEHJ

https://orcid.org/0009-0009-7073-816X
https://doi.org/10.20473/vsehj.v4i3.2025.72-80
https://doi.org/10.20473/vsehj.v4i3.2025.72-80
https://e-journal.unair.ac.id/VSEHJ
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0009-0006-1579-4036
https://orcid.org/0000-0002-2980-4956
https://orcid.org/0000-0002-0770-5922
https://orcid.org/0000-0002-2929-9240
https://orcid.org/0009-0000-9436-6254


 73

Bulbanat, Buabbas, Aljassar,Alqabandi, Alzalzalah Vision Science and Eye Health Journal

utilized AI to aid in disease diagnosis. A recent systematic 

review provided a significant report on keratoconus 

classification and the accuracy of machine learning 

algorithms in detecting keratoconus.[4] Also, many 

studies[1],[5],[6] have analyzed the accuracy of different AI 

models in detecting keratoconus in terms of sensitivity 

and specificity, including the random forest, the CNN, 

and other models. They found different AI models to have 

high sensitivity and specificity in diagnosing keratoconus.
[1],[5],[6] These studies employed various imaging modalities 

to capture corneal parameters, with the Pentacam HR 

(Oculus Optikgeräte, Wetzlar, Germany) being the most 

commonly used imaging modality.[1],[5],[6] However, most 

studies discussed the performance of single AI models, 

while some conducted a meta-analysis of a small sample. 

To our knowledge, no study has compared two AI models 

with the same imaging modality in the diagnosis of 

keratoconus. Unlike previous studies[4], which focused 

primarily on neural networks and naive Bayes models, our 

meta-analysis incorporates a broader range of AI models, 

directly compares their diagnostic accuracy using the 

same imaging modality and provides a comprehensive 

pooled sensitivity and specificity analysis to enhance 

the reliability of AI-based keratoconus detection. In this 

study, we aimed to conduct a meta-analysis of a large 

sample on the performance of different AI models in terms 

of sensitivity and specificity in diagnosing keratoconus. 

Additionally, we directly compared the two most common 

AI models: the Random Forest and the CNN. Other 

models were included in the combined meta-analysis.

Methods
Literature search strategy

A systematic search of databases, including PubMed, 

Scopus, Web of Science, Google Scholar, Embase, and 

ScienceDirect, was conducted from inception to 2024. 

Additionally, to incorporate unpublished works, a search 

was conducted within the grey literature using the 

OpenGrey repository. We followed the 2020 Preferred 

Reporting Items for systematic reviews and meta-analyses 

(PRISMA) guidelines. The search strategy used was a 

combination of search terms: (“Artificial Intelligence” 

OR “Machine Learning”) AND “Keratoconus” AND 

(“Diagnostic Accuracy” OR “Sensitivity” OR “Specificity”).

Inclusion and exclusion criteria
A total of 58 studies were identified from the databases 

(Figure 1), eleven of which were duplicate studies and 

were excluded.[2],[7],[8],[9],[10],[11],[12],[13],[14] Two independent 

researchers screened the titles and abstracts of the 47 

studies, 13 of which were excluded, as they did not use 

AI models.[15],[16],[17],[18],[19],[20],[21],[22],[23],[24],[25],[26],[27] Thirty-four 

studies were assessed for eligibility. The inclusion criteria 

were: 1) studies utilizing AI for keratoconus diagnosis 

across various platforms, including published articles 

in scholarly journals and significant grey literature, like 

technical reports and dissertations; 2) studies employing 

diverse AI models; and 3) studies incorporating novel 

imaging techniques. Systematic reviews, reply articles, 

and studies with insufficient data were excluded. Seven 

studies[4],[28],[29],[30],[31],[32],[33] were excluded because they 

did not meet the inclusion criteria. From the remaining 

27 studies, eight studies[8],[9],[11],[12],[23],[34],[35],[36] compared 

normal and early keratoconus eyes, so they were 

excluded, whereas 19 studies compared normal and 

keratoconus eyes, and were included in the meta-analys

is[1],[2],[6],[7],[13],[37],[38],[39],[40],[41],[42],[43],[44],[45],[46],[47],[48], these involved 

retrospective experimental studies.

Figure 1. PRISMA 2020 flow diagram.

Figure 2. Risk of bias and applicability concerns per domain plot (Green 
= Low risk; Yellow = Unclear risk, and Red = High risk).
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Study selection and data extraction
The systematic review followed the PRISMA 

guidelines. Two independent reviewers (Bulbanat and 
Buabbas), screened the titles and abstracts of all identified 
studies from the literature search. Studies were selected 
based on the following inclusion criteria: 1) use of AI 
for keratoconus diagnosis; 2) published between 2018 
and 2024; and 3) including metrics like sensitivity and 
specificity for diagnostic accuracy. Exclusion criteria 
included review articles, studies with insufficient 
data, and those that did not employ AI models. Full-
text articles were then assessed for eligibility, and 
any disagreements between reviewers were resolved 
through discussion with a third reviewer (Aljassar). Data 
extraction was performed by Alqabandi and Alzalzalah, 
who independently extracted the sensitivity, specificity, 
confidence intervals (CIs), the AI model used, the imaging 
parameter used, the number of centers involved, and the 
number of eyes. The extracted data were cross-verified 
for accuracy by Buabbas to ensure consistency across the 
dataset.

Data and reference management
All data and references from the systematic review 

were maintained and organized using EndNote (version 
X9, Clarivate Analytics). EndNote was used to manage 
citations, remove duplicate records, and track the 
references throughout the study selection process. The 
initial search results from databases such as PubMed, 
Scopus, and Google Scholar were imported into EndNote, 

where duplicate entries were identified and excluded 
before screening. For study selection, Covidence was 
used to screen abstracts and full texts, maintaining a 
clear audit trail of the decisions made. After the inclusion 
and exclusion criteria were applied, Covidence was used 
to track which studies were included or excluded at each 
stage of the process. Data from the selected studies were 
maintained using Microsoft Excel for ease of access and 
organization.

Quality assessment
The quality of the evidence in the articles that met 

the inclusion criteria was then assessed using Cochrane’s 
recommendations for risk of bias and level of evidence 
(Figure 2). The quality of the included studies was 
assessed using the Quality assessment of diagnostic 
accuracy studies-2 (QUADAS-2) tool, a standardized 
method for evaluating the risk of bias and applicability 
concerns in diagnostic accuracy studies. Each study 
was independently reviewed across four key domains: 
patient selection, index test, reference standard, and 
flow and timing. For each domain, the risk of bias was 
classified as low, high, or unclear based on predefined 
criteria. Applicability concerns were also assessed for 
patient selection, index test, and reference standard to 
ensure the findings were relevant to real-world clinical 
practice. Discrepancies in assessments were resolved 
through discussion among reviewers, ensuring a robust 
and objective evaluation of study quality.

Table 1. Studies utilizing machine learning models to detect keratoconus (number of centers, AI model, and imaging modality used).

Authors Number 
of eyes

Number of centers involved 
(country) AI model used Imaging modality or 

parameters
Chen et al.[1] 279 3 (UK, Iran, New Zealand) Convolutional neural network Pentacam HR
Kamiya et al. (2019)[36] 543 1 (Japan) Convolutional neural network Pentacam HR
Kamiya et al. (2021)[37] 220 1 (Japan) Deep learning Placido disk corneal topographer
Ambrósio et al. (2017)[2] 2861 25 (Brazil) Random Forest Pentacam HR and Corvis ST
Zéboulon et al.[42] 2000 1 (France) Convolutional neural network Pentacam HR
Lopes et al.[41] 3460 15 (UK, Brazil, Italy, USA) Random Forest Pentacam HR
Elsawy et al.[43] 236 1 (USA) Deep learning AS-OCT
del Río et al.[44] 475 1 (Mexico) Random Forest Pentacam HR
Bustamante-Arias et al.[48] 93 1 (Switzerland) Support Vector Machine SD- OCT
Tan et al.[12] 354 1 (China) Feed Forward Neural Network Pentacam HR and Corvis ST
Ambrósio et al. (2023)[7] 684 2 (Brazil, Italy) Random Forest Pentacam HR and Corvis ST
Santos et al.[5] 142 1 (Austria) CorneaNet AS-OCT
Kuo et al.[6] 326 1 (Taiwan) Convolutional neural network Pentacam HR
Abdelmotaal et al.[13] 734 2 (Brazil, Iran) Convolutional neural network Pentacam HR and Corvis ST
Agharezaei et al.[39] 1758 1 (Iran) Convolutional neural network Pentacam HR
Fassbind et al.[38] 1009 1 (Germany) Convolutional neural network AS-OCT
Issarti et al. (2020)[45] 503 2 (Belgium) Feed Forward Neural Network Pentacam HR
Castro-Luna et al.[47] 60 1 (Spain) naïve Bayes CSO topography system
Herber et al.[46] 220 1 (Germany) Linear Discriminant Analysis Pentacam HR and Corvis ST
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Multiple imputation
Nine studies[7],[13],[36],[37],[38],[42],[43],[44],[45] featuring the 

normal and keratoconus comparison had all the data 

needed to calculate the CI for the sensitivity and specificity 

of the AI models to detect keratoconus and their standard 

errors. However, ten studies[1],[2],[5],[6],[39],[40],[41],[46],[47],[48] had 

only the sensitivity and specificity without their CIs and 

standard errors, so a multiple imputation technique 

was used to estimate these missing values based on 

the available data from the nine studies. This multiple 

imputation was performed using R statistical software, 

and the standard errors of both sensitivity and specificity, 

along with their 95% CIs, were calculated for the ten 

studies.

Statistical analyses
All analyses were configured using the ‘metafor’ 

package from the R statistical software for Mac. To 

measure the overall machine learning performance for 

keratoconus detection, the sensitivity and specificity 

values for all AI models were pooled. A subgroup analysis 

was conducted for the Random Forest and CNN models 

by pooling the sensitivity and specificity values of the 

studies that utilized each model separately.

Results
Study characteristics

The studies were conducted in various 
countries using different imaging modalities and 
AI models (Table 1). A meta-analysis of all 19 
studies[1],[2],[5],[6],[7],[12],[13],[36],[37],[38],[39],[41],[42],[43],[44],[45],[46],[47],[48] 
was conducted with heterogeneity, forest plots, and 
funnel plots to assess publication bias. A sensitivity 
analysis was then conducted by performing the meta-
analysis on only the nine studies that had all the data 
without the imputation technique.[1],[2],[5],[6],[39],[40],[41],[46]

,[47],[48] The two meta-analyses were then compared to 
complete the sensitivity analysis. 

Meta-analysis for 19 studies
After conducting the meta-analysis for the 19 studies, the 

pooled sensitivity estimate was 94.65% with a 95% CI (91.35% 
to 97.95%), with p < 0.0001. The measure of heterogeneity 
was tau^2 = 0.0050 and tau = 0.0705 (Figure 3). The pooled 
specificity for all 19 studies is presented in Figure 4.

After conducting the meta-analysis for the 19 studies, 
the pooled specificity estimate was 97.55% with a 95% 
CI (96.23% to 98.78%), with p < 0.0001. The measure of 
heterogeneity was tau^2 = 0.0006 and tau = 0.0250 
(Figure 5). 

Figure 3. Forest plot sensitivity for all 19 studies 95% (91% to 98%).

Figure 4. Funnel plot sensitivity for all 19 studies.

Figure 5. Forest plot specificity for all 19 studies 98% (96% to 99%).

Figure 6. Funnel plot specificity for all 19 studies.
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Meta-analysis for nine studies
After conducting the meta-analysis for the pooled 

sensitivity of the nine studies without the imputed 
data, the pooled sensitivity estimate was 93.20% with a 
95% CI (85.90% to 100%), with p < 0.0001. The measure 
of heterogeneity was tau^2 = 0.0117 and tau = 0.1083 
(Figure 7). The pooled specificity for the nine studies 
without imputed data is shown in Figure 8.

After conducting the meta-analysis for the pooled 
specificity of the nine studies without the imputed data, 
the pooled specificity estimate was 98.28% with a 95% 
CI (96.91% to 99.66%), with p < 0.0001. The measure of 
heterogeneity was tau^2 = 0.0003 and tau = 0.0160 
(Figure 9). 

Subgroup analysis
Subgroup analysis was conducted, and a meta-

analysis was performed for sensitivity and specificity 
using five studies that utilized the CNN AI model.
[1],[36],[38],[39],[40] The pooled sensitivity estimate was 89.73% 
with a 95% CI (79.77% to 99.69%), with p < 0.0001. The 
measure of heterogeneity was tau^2 = 0.0123 and tau 
= 0.1109. The pooled specificity estimate was 95.27% 
with the 95% CI (91.88% to 98.66%), with p < 0.0001. The 

measure of heterogeneity was tau^2 = 0.0011 and tau = 
0.0329. A meta-analysis was conducted for the sensitivity 
and specificity of four studies[2],[6],[41],44] that utilized the 
random forest AI model. The pooled sensitivity estimate 
was 98.11% with a 95% CI (96.77% to 99.44%), with p < 
0.0001. The measure of heterogeneity was tau^2 = 0.0001 
and tau = 0.0107. The pooled specificity estimate was 
99% with a 95% CI (98.24% to 99.76%), with p < 0.0001. 
The measure of heterogeneity was tau^2 = 0.0000 and 
tau = 0.0045. The subgroup analysis comparing CNN and 
Random Forest models is summarized in Figure 10.

Discussion
This study confirmed the reliability of various AI 

models in the early diagnosis of keratoconus, with high 
sensitivity and specificity across the 19 studies. In terms 
of the sensitivity analysis, the pooled sensitivity and 
specificity were slightly higher when all 19 studies were 
included, compared to the meta-analysis that included 
only the nine studies. However, the CIs overlapped, 
suggesting that the imputed data did not significantly 
change the overall estimates. Heterogeneity slightly 
increased for sensitivity when all 19 studies were 

Figure 7. Forest plot sensitivity for nine studies without imputed data 
93% (86% to 100%).

Figure 8. Funnel plot sensitivity for nine studies without imputed data.

Figure 10. Funnel plot sensitivity for nine studies without imputed data.

Figure 9. Forest plot specificity for 9 studies without imputed data 98% 
(97% to 100%).
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included, as indicated by a higher tau^2 value. For 
specificity, the heterogeneity slightly decreased. This 
suggests that the imputed data may have introduced 
some variability into the sensitivity estimates but not into 
the specificity estimates. The funnel plots do not provide 
a clear indication of publication bias, but the presence of 
asymmetry suggests it cannot be ruled out. It is essential 
to note that while the inclusion of imputed data did 
not significantly alter the pooled estimates, it did affect 
the heterogeneity for sensitivity, suggesting that the 
imputed data may have contributed to some differences 
in the variability of the studies’ outcomes. Therefore, the 
sensitivity analysis suggests that the results of the meta-
analysis with all 19 studies are consistent with those of 
the meta-analysis with only the nine original studies, 
within the bounds of statistical variability and potential 
publication bias. In addition, it was found the random 
forest model with the Pentacam HR imaging parameter 
had a higher sensitivity and specificity from a meta-
analysis of four studies[2],[7],[42],[45] than the CNN model with 
the Pentacam HR imaging parameter, according to a meta-
analysis of five studies[1],[37],[39],[40],[41]. This study expands 
the existing literature on AI’s diagnostic capabilities for 
keratoconus by conducting a comprehensive analysis of 
various AI models across a significantly larger sample 
than prior studies, incorporating 19 high-quality studies 
assessed using the QUADAS-2 tool. Many previous 
studies[4],[9],[33] used different imaging techniques, which 
could affect the results. By standardizing the imaging 
modality (Pentacam HR) in our subgroup analyses, we 
were able to reduce variability and ensure that differences 
in performance were due to the AI models rather than the 
imaging method. Through a meticulous methodology, 
including multiple imputations and subgroup analyses 
for five CNN studies and four random forest studies, we 
managed to provide a direct comparison of the sensitivity 
and specificity of the two most common AI models in 
our study. However, caution should still be exercised 
when attempting to generalize the results to patients 
of different populations. This could be addressed by 
conducting a further subgroup analysis for each country 
or population, which could be an area of future research. 
This was challenging in our case due to the limited 
number of studies meeting our inclusion criteria.

Contextualization within existing literature
This study showcases a detailed comparison 

between Random Forest and CNN models in diagnosing 
keratoconus, highlighting the superior performance of 
the Random Forest model. This finding is particularly 
noteworthy when juxtaposed with the findings of Chen 
et al.[1] and Ambrósio et al.[2], which also explored the 
utility of CNN model and the Random Forest model in 
keratoconus detection respectively but did not provide 
a direct comparison between these two models. This 

study utilized the Pentacam HR as a common imaging 
modality for subgroup analysis. The consistency in 
imaging modalities, as observed by Kamiya et al.[38], 
facilitates a more reliable comparison across studies 
and highlights the potential for standardizing diagnostic 
practices in keratoconus. This study benefits from a large 
sample size of 19 studies for different AI models, which 
enhances the reliability of the findings when compared 
to another meta-analysis in the literature.[4] The other 
meta-analysis conducted found that neural networks 
and naive Bayes showed the highest accuracy among 
AI models in diagnosing keratoconus, with a sensitivity 
of 100%, while random forests had a sensitivity of over 
90%. However, their sample consisted of three studies for 
neural networks, two studies for random forests, and one 
study for naive Bayes, which was smaller than the sample 
size of five studies for CNNs and four studies for random 
forests in this study, and they included studies utilizing 
different imaging parameters for the different AI models, 
which would have affected the performance.[4]

Limitations
Some limitations were reported in this study, 

which are: 1) Some data were imputed in the meta-
analysis on the 19 studies, but this was partly adjusted 
for by conducting a meta-analysis for the nine studies 
without imputed data is shown in Figure 6, the pooled 
sensitivity and specificity of these meta-analyses were 
compared, and no significant differences were found; 
2) Some publication bias was noted, which is related to 
the sensitivity and specificity of the two meta-analyses; 
and 3) the different imaging techniques conducted by 
some of the studies and the different populations and 
countries involved, which could have contributed to the 
heterogeneity. This was adjusted for in the subgroup 
analyses of the CNN and random forest models by 
including studies utilizing the Pentacam HR imaging 
parameter. Despite some heterogeneity and publication 
bias, the findings support the effectiveness of AI, 
underscoring its potential to revolutionize keratoconus 
diagnosis and treatment. 

Approach for future studies
Future research is suggested to focus on refining AI 

models and imaging techniques within more uniform 
populations to mitigate heterogeneity and improve the 
generalizability of findings, thereby enhancing diagnostic 
accuracy.

Conclusions
This study confirmed the reliability of various AI 

models in terms of sensitivity and specificity in diagnosing 
keratoconus, particularly the random forest model. 
This is important, as the early and accurate detection of 
keratoconus provides opportunities to reduce risk factors 
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and offer treatments, including CXL, to potentially slow 
its progression, thereby improving the patient’s quality 
of life.
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