Main Article Content

Abstract

Cytochrome P450 monooxygenase (CYP71AV1) is a crucial enzyme in the artemisinin biosynthesis pathway. This enzyme oxidized Amorpha 4,11 diene to produce artemisinic acid. This study aimed to in silico design high-level expression of CYP71AV1 in the E.coli system. In silico techniques are highly suitable for designing protein recombinant production before entering the laboratory. The amino acid sequence of CYP71AV1 was back-translated to the DNA sequence and adapt to E.coli codon usage by using Gene Designer. The DNA sequence of optimized CYP71AV1 was analyzed using Rare Codon Analysis to assess the expression efficiency in E.coli. The protein solubility prediction was determined using the SoDoPe tool. The optimized CYP71AV1 was determined to have a CAI 0.81, a GC content of 53.08 %, CFD with low frequency, and no negative cis or repeat elements. The result of the probability of solubility of CYP71AV1 was 0.6207 when expressed in E.coli. The MBP fusion partner can be used to increase the solubility of CYP71AV1. The in silico results showed the possibility of high-level protein expression of optimized CYP71AV1 in the E.coli system.

Keywords

in silico design CYP71AV1 CAI GC contents protein solubility

Article Details

How to Cite
Ulfa, E. U. (2022). In Silico Design Gene Encoding CYP71AV1 for Expression in Escherichia coli. Journal of Bio-Molecule Research and Engineering, 1(1), 1–6. https://doi.org/10.20473/jbiome.v1i1.35856

References

  1. E.L. Korenromp, B.G. Williams, E. Gouws, C. Dye and R.W. Snow, Lancet Infect. Dis 3, 349–358, 2003.
  2. D. Rathore, T.F. Mc Cutchan, M. Sullivan, and S. Kumar, Expert Opin. Investig. Drugs 14, 871–883, 2005.
  3. V.J.J. Martin, D.J. Pitera, S.T. Withers, J.D. Newman, J.D. Keasling J.D, Nature Biotechnology, Nature Publishing Group 21, 796-802, 2003.
  4. L.D. Cabrita, D. Weiwen and P.B. Stephen. BMC biotechnology 6, 12, 2006.
  5. H.P. Sorensen, K.K. Mortensen, Journal of Biotechnology 115,113–128, 2005.
  6. C. Gustafsson, S. Govindarajan, J. Minshull. TRENDS in Biotechnology.22 (7), 346-353, 2004.
  7. M.A. Ullah, B. Sarkar, and S.S. Islam. Immunobiology, 225 (3), 1–80, 2020.
  8. H. Nielsen, J. Engelbrecht, S. Brunak, G.V. Heijne, International Journal of Neural System 8,581–599, 1997.
  9. X. Wang, X. Li, Z. Zhang, X. Shen and F. Zhong, Protein Expression and Purification 72, 101-106, 2010.
  10. E. U. Ulfa, E. Munadziroh, H. Hermansyah, N.N.T. Puspaningsih, J. Chem. Technol. Metall. 55 (6), 1999-2008, 2020.
  11. D. Kernain, M.A. Samad, S. Shamsuddin, Internal Medicine Journal 24,451–454, 2017.
  12. G. Hanson, J. Coller.Nat Rev Mol Cell Biol.19(1), 20-30, 2018.
  13. A. Evelina Biotechnol J. 6 (6), 650–659, 2011.
  14. A. Ghasemi, R. Ranjbar, J. Amani. Iran J Basic Med Sci 17 (3), 172-180, 2014.
  15. B. Zheng, X. Ma, N. Wang, et al. Nat Commun 9, 3616, 2018.
  16. C. Elena, P. Ravasi, ME. Castelli, S. Peirú, H.G. Menzella, Front Microbiol 5:21, 2014.
  17. B. K. Bhandari, P.P. Gardner, C.S. Bioinformatics. 36(18):4691-4698, 2020.
  18. D. Esposito, D.K. Chatterjee Curr. Opin. Biotechnol 17, 353–358, 2006.
  19. F. Chiti. M. Stefani,N. Taddei, G. Ramponi, and C.M. Dobson, Nature, 424, 805–808, 2003.
  20. A.A.Diaz, E. Tomba, R. Lennarson, R. Richard, M.J. Bagajewicz, R.G. Harrison. Biotechnol. Bioeng.105, 374–383, 2010
  21. G. G. Tartaglia, A.Cavalli, R. Pellarin, A. Caflisc. Protein Sci. 13, 1939–1941, 2004.
  22. D. L. Wilkinson, R.G Harrison Biotechnology, 9, 443–448, 1991.
  23. S. Raran-Kurussi and D.S. Waugh. PLoS One 17, 2012.
  24. S. Raran-Kurussi, K. Keefe, D.S. Waugh. Protein Expr Purif. 110, 159-164, 2015.