Main Article Content

Abstract

Bioindustries often involve biochemical processes that occur at higher temperatures. However, most proteins, including enzymes, lose their structural integrity and functionality at higher temperatures. Thus, thermostable enzymes from thermophilic microorganisms are best suited candidates for successful bioprocessing under such conditions. Indonesia is one of the best study sites for performing bioprospecting of thermostable enzyme-producing thermophilic microorganisms due to the numerous hot springs. To explore the biodiversity of thermophilic microorganisms with potential industrial applications, we isolated and characterized thermophilic bacteria from the Cangar hot spring, Batu, East Java, Indonesia. One isolate (CGR-1) showed growth at 60°C and was identified as Bacillus subtilis subsp. inaquosorum based on 16s rRNA gene sequencing followed by bioinformatic analysis. This is the first report on the isolation of Bacillus subtilis subsp. inaquosorum CGR-1 from Indonesia, especially from a hot spring environment. This isolate showed cellulolytic and amylolytic activity at 50°C, which would encourage further exploration on the industrial and environmental applications.

Keywords

Bacillus subtilis subsp. inaquosorum hot springs industrial microbiology thermophilic bacteria thermostable enzymes

Article Details

How to Cite
Geraldi, A., Aulia Azzahra, Dimas Aryq Ijlal Wafi, Febriani Sukma Maghfirotul Chasanah, Lillah Asritafriha, Rizki Amaliah Zain, & Us Watun Nurul Khasanah. (2022). Isolation and Characterization of Thermophilic Bacillus subtilis subsp. inaquosorum CGR-1 from Cangar Hot Springs. Journal of Bio-Molecule Research and Engineering, 1(1), 32–39. https://doi.org/10.20473/jbiome.v1i1.35860

References

  1. S. Elleuche, C. Schäfers, S. Blank, C. Schröder, G. Antranikian, Exploration of extremophiles for high temperature biotechnological processes. Biotechnol. Adv. 25, 2015, 116.
  2. S. Elleuche, C. Schröder, K. Sahm, G. Antranikian, Extremozymes--biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol. 29, 2014, 116.
  3. F. Rigoldi, S. Donini, A. Redaelli, E. Parisini, A. Gautieri, Review: Engineering of thermostable enzymes for industrial applications. APL Bioeng. 2, 2018, 011501.
  4. H. Yohandini, Julinar, M. Muharni, Isolation and phylogenetic analysis of thermophile community Within Tanjung Sakti Hot Spring, south Sumatera, Indonesia. HAYATI J. Biosci. 22, 2015, 143.
  5. D. Ibrahim, H.L. Zhu, N. Yusof, Isnaeni, L.S. Hong, Bacillus licheniformis BT5.9 isolated from changar hot spring, Malang, Indonesia, as a potential producer of thermostable α-amylase. Trop. Life Sci. Res. 24, 2013, 71.
  6. F.A.A. Rashid, R.A. Rahim, D. Ibrahim, A. Balan, N.M.A. Bakar, Purification and properties of thermostable lipase from a thermophilic bacterium, bacillus licheniformis IBRL-CHS2. J. Pure Appl. Microbiol. 7, 2013, 1635.
  7. R. Chrisnasari, D. Verina, A.C. Tapatfeto, S. Pranata, T. Patjajani, M. Wahjudi, M.G. Purwanto, Isolating and characterising chitinolytic thermophilic bacteria from Cangar Hot Spring, east Java. Pertanika J. Trop. Agric. Sci. 41, 2018, 1437.
  8. B.T. Mohammad, H.I. Al Daghistani, A. Jaouani, S. Abdel-Latif, C. Kennes, Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol, 2017, 6943952.
  9. J.L. Jardine, S. Stoychev, V. Mavumengwana, E. Ubomba-Jaswa, Screening of potential bioremediation enzymes from hot spring bacteria using conventional plate assays and liquid chromatography-tandem mass spectrometry (Lc-Ms/Ms). J. Environ. Manage. 223, 2018, 787.
  10. G.K. Satyapal, S.K. Mishra, A. Srivastava, R.K. Ranjan, K. Prakash, R. Haque, N. Kumar, Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India. Biotechnol. Rep. 17, 2018, 117.
  11. S.H. Yoon, S.M. Ha, S. Kwon, J. Lim, Y. Kim, H. Seo, J. Chun, Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 2017, 1613.
  12. S. Maity, S. Mallik, R. Basuthakur, S. Gupta, Optimization of solid state fermentation conditions and characterization of thermostable alpha amylase from Bacillus subtilis (ATCC 6633). J. Bioprocess. Biotech. 5, 2015, 1.
  13. M. Sharma, B. Kumar Bajaj, Optimization of bioprocess variables for production of a thermostable and wide range pH stable carboxymethyl cellulase from Bacillus subtilis MS 54 under solid state fermentation. Environ Prog Sustain Energy. 36, 2017, 1123.
  14. A. Dhyani, R. Jain, A. Pandey, A. Sharma, K. Dhakar, V. Pande, Diauxic growth pattern in thermophilic Bacillus spp with respect to production of thermostable amylase. J. Curr. Microbiol. 1, 2018, 15.
  15. I. Febriani, R. Hertadi, P. Kahar, M.F. Akhmaloka, Isolation and purification of novel thermostable alkaline lipase from local thermophilic microorganism. Biosci. Biotechnol. Res. Asia. 7, 2010, 617.
  16. A. Arzita, S. Syamsuardi, A. Agustien, Y. Rilda, The diversity of the alkaline protease producers, thermophilic obligate Bacillus spp., from sungai Tutung Hot Spring, Kerinci, Jambi, Indonesia. J. Pure. Appl. Microbiol. 11, 2017, 1789.
  17. R.A. Arfah, A. Ahmad, M.N. Djide, M. Anis, M. Zakir, Production optimization and characterization of amylase enzyme isolated from Termofil bacteria Bacillus sp RSAII-1b from Lejja Hot Spring south Sulawesi. Am. J. Biomed. Life Sci. 3, 2015, 115.
  18. A.P. Rooney, N.P.J. Price, C. Ehrhardt, J.L. Swezey, J.D. Bannan, Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int. J. Syst. Evol. Microbiol. 59, 2009, 2429.
  19. C.A. Knight, M.J. Bowman, L. Frederick, A. Day, C. Lee, C.A. Dunlap, The first report of antifungal lipopeptide production by a Bacillus subtilis subsp. inaquosorum strain. Microbiol. Res. 216, 2018, 40.
  20. J. Carrazco-Palafox, B.E. Rivera-Chavira, N. Ramírez-Baca, L.I. Manzanares-Papayanopoulos, G.V. Nevárez-Moorillón, Improved method for qualitative screening of lipolytic bacterial strains. MethodsX. 5, 2018, 68.
  21. S. Regmi, H.Y. Yoo, Y.H. Choi, Y.S. Choi, J.C. Yoo, S.W. Kim, Prospects for bio-industrial application of an extremely alkaline mannanase From Bacillus subtilis subsp. inaquosorum CSB31. Biotechnol. J. 12, 2017, 1700113.
  22. R. Gautam, J. Sharma, Optimization, purification of cellulase produced from Bacillus subtilis subsp. inaquosorum under solid state fermentation and its potential applications in denim industry. Int. J. Sci. Res. 3, 2012, 1759.
  23. T. Varadavenkatesan, V.R. Murty, Production and properties of a lipopeptide biosurfactant by B. subtilis subsp. inaquosorum. J. Microbiol. Biotechnol. Res. 3, 2013, 63.