Potential of Microbial Isolates from Indonesia in Producing Antimicrobial Compounds: A Review
Downloads
Indonesia, as a megabiodiverse country, possesses a wealth of beneficial microorganisms, including bacteria and fungi capable of producing antimicrobial compounds. Over the past decade, extensive research has been conducted in Indonesia to explore and screen the antimicrobial activities of bacteria and fungi. These microorganisms have been isolated from various ecosystems, such as terrestrial, maritime, extreme environments like hot springs and sand dunes, as well as from animals and plants hosts. Most studies have focused on the antimicrobial activity of crude metabolite extracts, which demonstrate inhibitory effects against clinically significant pathogens, including Methicillin-resistant Staphylococcus aureus, multidrug-resistant Escherichia coli, and Salmonella typhi. This review systematically synthesizes findings from peer-reviewed literature, detailing isolation strategies, antimicrobial screening techniques, and the bioactivities reported. By consolidating current knowledge, it aims to elucidate the potential of Indonesia’s microbial resources for developing novel antimicrobial agents and promoting their sustainable exploitation within the context of global health challenges.
M. M. Aljeldah, “Antimicrobial Resistance and Its Spread Is a Global Threat,” Antibiotics, vol. 11, no. 8, 2022, doi: 10.3390/antibiotics11081082.
S. Yadav and A. Kapley, “Antibiotic resistance: Global health crisis and metagenomics,” Biotechnology Reports, vol. 29, p. e00604, 2021, doi: 10.1016/j.btre.2021.e00604.
V. P. Alonso, M. M. Queiroz, M. L. Gualberto, and M. S. Nascimento, “Klebsiella pneumonia carbapenemase (KPC), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus spp. (VRE)in the food production chain and biofilm formation on abiotic surfaces,” Current Opinion in Food Science, vol. 26, pp. 79–86, 2019, doi: 10.1016/j.cofs.2019.04.002.
Y. Xie, J. Chen, A. Xiao, and L. Liu, “Antibacterial activity of polyphenols: Structure-activity relationship and influence of hyperglycemic condition,” Molecules, vol. 22, no. 11, 2017, doi: 10.3390/molecules22111913.
L. H. Yan, X. M. Li, L. P. Chi, X. Li, and B. G. Wang, “Six new antimicrobial metabolites from the deep-sea sediment-derived fungus aspergillus fumigatus SD-406,” Marine Drugs, vol. 20, no. 1, pp. 1–14, 2022, doi: 10.3390/md20010004.
N. Vaou, E. Stavropoulou, C. Voidarou, C. Tsigalou, and E. Bezirtzoglou, “Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives,” Microorganisms, vol. 9, no. 10, pp. 1–28, 2021, doi: 10.3390/microorganisms9102041.
T. Ali et al., “Antibacterial activity of plant essential oils against indigenously characterized methicillin-resistant Staphylococcus aureus (MRSA),” Tropical Biomedicine, vol. 39, no. 1, pp. 17–25, 2022, doi: 10.47665/tb.39.1.005.
S. S. Faujdar, D. Bisht, and A. Sharma, “Antibacterial activity of Syzygium aromaticum (clove) against uropathogens producing ESBL, MBL, and AmpC beta lactamase: Are we close to getting a new antibacterial agent?,” Journal of Family Medicine and Primary Care, vol. 9, no. 1, pp. 180–186, 2020, doi: 10.4103/jfmpc.jfmpc.
A. Geraldi et al., “Tropical Medicinal Plant Extracts from Indonesia as Antifungal Agents against Candida Albicans,” Frontiers in Bioscience - Landmark, vol. 27, no. 9, Sep. 2022, doi: 10.31083/j.fbl2709274.
A. H. Benfield and S. T. Henriques, “Mode-of-Action of Antimicrobial Peptides: Membrane Disruption vs. Intracellular Mechanisms,” Frontiers in Medical Technology, vol. 2, no. December, pp. 25–28, 2020, doi: 10.3389/fmedt.2020.610997.
B. P. Lazzaro, M. Zasloff, and J. Rolff, “Antimicrobial peptides: Application informed by evolution,” Science, vol. 368, no. 6490, 2020, doi: 10.1126/science.aau5480.
Y. Yuan et al., “A novel membrane-disruptive antimicrobial peptide from frog skin secretion against cystic fibrosis isolates and evaluation of anti-MRSA effect using Galleria mellonella model,” Biochimica et Biophysica Acta - General Subjects, vol. 1863, no. 5, pp. 849–856, 2019, doi: 10.1016/j.bbagen.2019.02.013.
W. F. Wang et al., “Identification of a Novel Antimicrobial Peptide From the Ancient Marine Arthropod Chinese Horseshoe Crab, Tachypleus tridentatus,” Frontiers in Immunology, vol. 13, no. March, pp. 1–15, 2022, doi: 10.3389/fimmu.2022.794779.
G. A. Durand, D. Raoult, and G. Dubourg, “International Journal of Antimicrobial Agents Antibiotic discovery : history , methods and perspectives,” vol. 53, pp. 371–382, 2019.
M. Hutchings, A. Truman, and B. Wilkinson, “Antibiotics: past, present and future,” Current Opinion in Microbiology, vol. 51, no. Figure 1, pp. 72–80, 2019, doi: 10.1016/j.mib.2019.10.008.
R. Srinivasan, A. Kannappan, C. Shi, and X. Lin, “Marine bacterial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds,” Marine Drugs, vol. 19, no. 10, pp. 1–36, 2021, doi: 10.3390/md19100530.
C. K. Venil, L. Dufossé, and P. Renuka Devi, “Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry,” Frontiers in Sustainable Food Systems, vol. 4, no. July, pp. 1–17, 2020, doi: 10.3389/fsufs.2020.00100.
I. Sanka et al., “Synthetic biology in Indonesia: Potential and projection in a country with mega biodiversity,” Biotechnology Notes, vol. 4, no. December 2022, pp. 41–48, 2023, doi: 10.1016/j.biotno.2023.02.002.
H. Y. S. H. Nugroho et al., “Mainstreaming Ecosystem Services from Indonesia’s Remaining Forests,” Sustainability (Switzerland), vol. 14, no. 19, 2022, doi: 10.3390/su141912124.
S. Syukur, “Antimicrobial Properties and Lactase Activities from Selected Probiotic Lactobacillus brevis Associated With Green Cacao Fermentation in West Sumatra, Indonesia,” Journal of Probiotics & Health, vol. 01, no. 04, pp. 4–7, 2013, doi: 10.4172/2329-8901.1000113.
N. Böhringer et al., “Antimicrobial potential of bacteria associated with marine sea slugs from North Sulawesi, Indonesia,” Frontiers in Microbiology, vol. 8, no. JUN, pp. 1–8, 2017, doi: 10.3389/fmicb.2017.01092.
Y. Retnowati, S. Moeljopawiro, T. S. Djohan, and E. S. Soetarto, “Antimicrobial activities of actinomycete isolates from rhizospheric soils in different mangrove forests of Torosiaje, Gorontalo, Indonesia,” Biodiversitas, vol. 19, no. 6, pp. 2196–2203, 2018, doi: 10.13057/biodiv/d190627.
O. Cristianawati et al., “Screening of antibacterial activity of seagrass-associated bacteria from the North Java Sea, Indonesia against multidrug-resistant bacteria,” AACL Bioflux, vol. 12, no. 4, pp. 1054–1064, 2019.
D. R. Husain, S. Gunawan, and S. Sulfahri, “Antimicrobial potential of lactic acid bacteria from domestic chickens (Gallus domesticus) from south celebes, indonesia, in different growth phases: In vitro experiments supported by computational docking,” Iranian Journal of Microbiology, vol. 12, no. 1, pp. 62–69, 2020, doi: 10.18502/ijm.v12i1.2519.
D. Mahdiyah et al., “Screening of Indonesian peat soil bacteria producing antimicrobial compounds,” Saudi Journal of Biological Sciences, vol. 27, no. 10, pp. 2604–2611, 2020, doi: 10.1016/j.sjbs.2020.05.033.
E. Setiyono, M. A. S. Adhiwibawa, R. Indrawati, M. N. U. Prihastyanti, Y. Shioi, and T. H. P. Brotosudarmo, “An Indonesian Marine Bacterium, Pseudoalteromonas rubra, Produces Antimicrobial Prodiginine Pigments,” ACS Omega, vol. 5, no. 9, pp. 4626–4635, 2020, doi: 10.1021/acsomega.9b04322.
H. Harun, Y. Wirasti, B. Purwanto, and E. Purwati, “Characterization of lactic acid bacteria and determination of antimicrobial activity in dadih from air dingin alahan panjang district, solok regency-west sumatera,” Systematic Reviews in Pharmacy, vol. 11, no. 3, pp. 583–586, 2020, doi: 10.31838/srp.2020.3.76.
S. Setiawati et al., “The potency of actinomycetes extracts isolated from pramuka island, jakarta, indonesia as antimicrobial agents,” Biodiversitas, vol. 22, no. 3, pp. 1104–1111, 2021, doi: 10.13057/biodiv/d220304.
Fatimah et al., “Antimicrobial activity of actinomycetes isolated from mangrove soil in Tuban, Indonesia,” Biodiversitas, vol. 23, no. 6, pp. 2957–2965, 2022, doi: 10.13057/biodiv/d230622.
A. Geraldi et al., “Screening of antibacterial activities of Bacillus spp. isolated from the Parangkusumo coastal sand dunes, Indonesia,” BIO Integration, vol. 3, no. 3, pp. 132–137, 2022, doi: 10.15212/bioi-2022-0005.
C. N. Ginting, F. Piska, Harmileni, and E. Fachrial, “Molecular identification of thermophilic bacteria with antimicrobial activity isolated from hot springs in North Sumatra, Indonesia,” Biodiversitas, vol. 24, no. 2, pp. 752–758, 2023, doi: 10.13057/biodiv/d240210.
S. Polonca, “Environment Shapes the Intra-species Diversity of Bacillus subtilis Isolates,” Microbial Ecology, vol. 79, no. 4, pp. 853–864, 2020, doi: 10.1007/s00248-019-01455-y.
B. K. Kashyap, M. K. Solanki, and A. K. Pandey, “Plant Health Under Biotic Stress,” Plant Health Under Biotic Stress, pp. 219–236, 2019, doi: 10.1007/978-981-13-6040-4.
C. Tran, I. E. Cock, X. Chen, and Y. Feng, “Antimicrobial Bacillus: Metabolites and Their Mode of Action,” Antibiotics, vol. 11, no. 1, 2022, doi: 10.3390/antibiotics11010088.
M. Fazle Rabbee and K. H. Baek, “Antimicrobial Activities of Lipopeptides and Polyketides of Bacillus velezensis for Agricultural Applications,” Molecules (Basel, Switzerland), vol. 25, no. 21, 2020, doi: 10.3390/molecules25214973.
S. Caulier, C. Nannan, A. Gillis, F. Licciardi, C. Bragard, and J. Mahillon, “Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group,” Frontiers in Microbiology, vol. 10, no. FEB, pp. 1–19, 2019, doi: 10.3389/fmicb.2019.00302.
G. A. Quinn, A. M. Banat, A. M. Abdelhameed, and I. M. Banat, “Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery,” Journal of Medical Microbiology, vol. 69, no. 8, pp. 1040–1048, 2020, doi: 10.1099/jmm.0.001232.
L. Donald, A. Pipite, R. Subramani, J. Owen, R. A. Keyzers, and T. Taufa, “Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective,” Microbiology Research, vol. 13, no. 3, pp. 418–465, 2022, doi: 10.3390/microbiolres13030031.
K. Alam et al., “Streptomyces: The biofactory of secondary metabolites,” Frontiers in Microbiology, vol. 13, no. September, pp. 1–21, 2022, doi: 10.3389/fmicb.2022.968053.
M. P. Mokoena, C. A. Omatola, and A. O. Olaniran, “Applications of lactic acid bacteria and their bacteriocins against food spoilage microorganisms and foodborne pathogens,” Molecules, vol. 26, no. 22, 2021, doi: 10.3390/molecules26227055.
P. Lucas-Elío, D. Gómez, F. Solano, and A. Sanchez-Amat, “The antimicrobial activity of marinocine, synthesized by Marinomonas mediterranea, is due to hydrogen peroxide generated by its lysine oxidase activity,” Journal of Bacteriology, vol. 188, no. 7, pp. 2493–2501, 2006, doi: 10.1128/JB.188.7.2493-2501.2006.
D. Gómez, P. Lucas-Elío, F. Solano, and A. Sanchez-Amat, “Both genes in the Marinomonas mediterranea lodAB operon are required for the expression of the antimicrobial protein lysine oxidase,” Molecular Microbiology, vol. 75, no. 2, pp. 462–473, 2010, doi: 10.1111/j.1365-2958.2009.07000.x.
D. Ayuningrum et al., “Tunicate-associated bacteria show a great potential for the discovery of antimicrobial compounds,” PLoS ONE, vol. 14, no. 3, pp. 1–14, 2019, doi: 10.1371/journal.pone.0213797.
P. Astuti, W. Wahyono, T. Nuryastuti, I. Purwantini, and P. Purwanto, “Antimicrobial and Cytotoxic Activities of Endophytic Fungi Isolated from Artemisia annua L,” Journal of Applied Pharmaceutical Science, vol. 4, no. 10, pp. 47–50, 2014, doi: 10.7324/japs.2014.401009.
M. T. Sibero, D. W. Triningsih, O. K. Radjasa, A. Sabdono, and A. Trianto, “Evaluation of Antimicrobial Activity and Identification of Yellow Pigmented Marine Sponge-Associated Fungi from Teluk Awur, Jepara, Central Java,” Indonesian Journal of Biotechnology, vol. 21, no. 1, p. 1, 2017, doi: 10.22146/ijbiotech.26058.
D. Handayani, H. Rivai, M. Hutabarat, and R. Rasyid, “Antibacterial activity of endophytic fungi isolated from mangrove plant Sonneratia griffithii Kurz,” Journal of Applied Pharmaceutical Science, vol. 7, no. 4, pp. 209–212, 2017, doi: 10.7324/JAPS.2017.70431.
E. P. Setyowati, S. U. T. Pratiwi, Purwantiningsih, and P. O. Samirana, “Antimicrobial activity and Identification of fungus associated Stylissa flabelliformis sponge collected from Menjangan Island West Bali National Park, Indonesia,” Indonesian Journal of Pharmacy, vol. 29, no. 2, pp. 66–73, 2018, doi: 10.14499/indonesianjpharm29iss2pp66.
H. Mulyani, R. T. Dewi, and Chaidir, “Antibacterial Compound from Aspergillus elegans SweF9 an Endophytic Fungus from Macroalgae Euchema sp.,” Indonesian Journal of Pharmacy, vol. 30, no. 3, pp. 217–224, 2019, doi: 10.14499/indonesianjpharm30iss3pp217.
A. Sabdaningsih et al., “Anti MDR acinetobacter baumannii of the sponges-associated fungi from Karimunjawa national park,” AACL Bioflux, vol. 12, no. 5, pp. 1970–1983, 2019.
P. Astuti, R. Rollando, S. Wahyuono, and A. Nurrochmad, “Antimicrobial activities of isoprene compounds produced by an endophytic fungus isolated from the leaves of Coleus amboinicus Lour,” Journal of Pharmacy and Pharmacognosy Research, vol. 8, no. 4, pp. 280–289, 2020.
D. Handayani, M. A. Artasasta, N. Safirna, D. F. Ayuni, T. E. Tallei, and T. Hertiani, “Fungal isolates from marine sponge Chelonaplysilla sp.: Diversity, antimicrobial and cytotoxic activities,” Biodiversitas, vol. 21, no. 5, pp. 1954–1960, 2020, doi: 10.13057/biodiv/d210523.
A. R. B. Ola, C. A. P. Soa, Y. Sugi, T. Da Cunha, H. L. L. Belli, and H. J. D. Lalel, “Antimicrobial metabolite from the endophytic fungi aspergillus flavus isolated from sonneratia Alba, a mangrove plant of Timor-Indonesia,” Rasayan Journal of Chemistry, vol. 13, no. 1, pp. 377–381, 2020, doi: 10.31788/RJC.2020.1315585.
P. Amelia, P. A. K. Ivada, N. Fitriana, I. Komala, S. Bahri, and and M. Hanafi, “Antioxidant And Antimicrobial Activity Of Secondary Metabolite Produced By Endophytic Fungi Isolated From Lannea Coromandelica (Houtt.) Merr,” vol. 12, no. 3, pp. 1588–1592, 2021, doi: 10.13040/IJPSR.0975-8232.12(3).1588-92.
L. D. Witasari et al., “Antimicrobial activities of fungus comb extracts isolated from Indomalayan termite (Macrotermes gilvus Hagen) mound,” AMB Express, vol. 12, no. 1, 2022, doi: 10.1186/s13568-022-01359-0.
D. A. Sumilat, R. A. J. Lintang, S. L. Undap, A. A. Adam, and T. E. Tallei, “Phytochemical, antioxidant, and antimicrobial analysis of Trichoderma asperellum isolated from ascidian Eudistoma sp,” Journal of Applied Pharmaceutical Science, vol. 12, no. 4, pp. 90–95, 2022, doi: 10.7324/JAPS.2022.120410.
F. S. Youssef, E. Alshammari, and M. L. Ashour, “Bioactive alkaloids from genus aspergillus: Mechanistic interpretation of their antimicrobial and potential sars-cov-2 inhibitory activity using molecular modelling,” International Journal of Molecular Sciences, vol. 22, no. 4, pp. 1–22, 2021, doi: 10.3390/ijms22041866.
A. A. Al-Fakih and W. Q. A. Almaqtri, “Overview on antibacterial metabolites from terrestrial Aspergillus spp,” Mycology, vol. 10, no. 4, pp. 191–209, 2019, doi: 10.1080/21501203.2019.1604576.
M. Sood, D. Kapoor, V. Kumar, and M. S. Sheteiwy, “Trichoderma : The ‘ Secrets ’ of a Multitalented,” Plants, vol. 9, p. 762, 2020.
F. V. Ferreira and M. A. Musumeci, “Trichoderma as biological control agent: scope and prospects to improve efficacy,” World Journal of Microbiology and Biotechnology, vol. 37, no. 5, pp. 1–17, 2021, doi: 10.1007/s11274-021-03058-7.
G. K. Patra, G. K. Acharya, J. Panigrahi, A. K. Mukherjee, and G. R. Rout, “The soil-borne fungal pathogen Athelia rolfsii: past, present, and future concern in legumes,” Folia Microbiologica, no. 0123456789, 2023, doi: 10.1007/s12223-023-01086-4.
Copyright (c) 2023 Journal of Bio-molecule Research And Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COPYRIGHT NOTICE
1. By submitting the article toJournal of Bio-Molecule Research and Engineering [JBIOME], the author has agreed to transfer some of the copyrights to the publisher of the research chemistry journal, Universitas Airlangga, indicated in the Copyright Transfer Agreement.
2. Authors still retain significant rights to use and share their own published articles for non-commercial purposes subject to Creative Commons Attribution-NonComercial-ShareALike 4.0 International License
3. All publications (printed/electronic) are open access for educational purposes, research, library, and other non-commercial purposes. Besides the purposes mentioned above, the editorial board is not responsible for copyright violations.