Studies of Yeasts Isolated from Soil as Cellulose Decomposers and Phosphate Solvents
Downloads
The identification of CMCase (Carboxymethylcellulase) and PMEase (Phosphomonoesterase) enzyme activities from yeast genera that produce cellulase and phosphatase is crucial for identifying potential genera that could aid in the development of biofertilizers, serving as an environmentally friendly alternative to chemical fertilizers. This study is based on a review of articles and journals for data collection. The review revealed that the yeast genus Rhodosporidium (specifically Rhodosporidium paludigenum Y08RA29) is a promising cellulolytic yeast, with CMCase activity approaching 0.500 units. Meanwhile, the potential phosphate-solubilizing yeast genus is Candida (Candida sp. 3), with PMEase activity ranging from 0.05 to 0.06 units.
W. Solomon, T. Janda, and Z. Molnar, "Unveiling the significance of rhizosphere: Implications for plant growth, stress response, and sustainable agriculture," Plant Physiol Biochem, vol. 206, p. 108290, Jan 2024, doi: 10.1016/j.plaphy.2023.108290.
S. Hakim et al., "Rhizosphere Engineering With Plant Growth-Promoting Microorganisms for Agriculture and Ecological Sustainability," (in English), Frontiers in Sustainable Food Systems, vol. 5, p. 617157, Feb 15 2021, doi: ARTN 61715710.3389/fsufs.2021.617157.
S. K. Upadhyay et al., "Root Exudates: Mechanistic Insight of Plant Growth Promoting Rhizobacteria for Sustainable Crop Production," Front Microbiol, vol. 13, p. 916488, 2022, doi: 10.3389/fmicb.2022.916488.
S. S. Zhu, J. M. Vivanco, and D. K. Manter, "Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize," (in English), Applied Soil Ecology, vol. 107, pp. 324-333, Nov 2016, doi: 10.1016/j.apsoil.2016.07.009.
K. A. Nimsi, K. Manjusha, A. A. M. Hatha, and K. Kathiresan, "Diversity, distribution, and bioprospecting potentials of manglicolous yeasts: a review," FEMS Microbiology Ecology, vol. 99, no. 5, p. fiad044, 2023.
K. Kandasamy, N. M. Alikunhi, and M. Subramanian, "Yeasts in marine and estuarine environments," J Yeast Fungal Res, vol. 3, no. 6, pp. 74-82, 2012.
M. Fakruddin, M. N. Hossain, and M. M. Ahmed, "Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic," BMC Complementary and Alternative Medicine, vol. 17, pp. 1-11, 2017.
A. Sharma and S. C. Sharma, "Physiological basis for the tolerance of yeast Zygosaccharomyces bisporus to salt stress," HAYATI Journal of Biosciences, vol. 24, no. 4, pp. 176-181, 2017.
O. S. Defi and R. Anna, "Potential of yeast at reducing uranium concentration in organic waste TBP-Kerosene contain uranium," 2011.
M. Sohail et al., "Cellulolytic and Xylanolytic Enzymes from Yeasts: Properties and Industrial Applications," Molecules, vol. 27, no. 12, p. 3783, Jun 12 2022, doi: 10.3390/molecules27123783.
D. Thakur, R. Kaushal, and V. Shyam, "Phosphate solubilising microorganisms: role in phosphorus nutrition of crop plants-a review," Agricultural Reviews, vol. 35, no. 3, pp. 159-171, 2014.
N. S. S. Rao, Mikroorganisme tanah dan pertumbuhan. Universitas Indonesia, 2010.
S. Gautam, P. Bundela, A. Pandey, J. Jamaluddin, M. Awasthi, and S. Sarsaiya, "A review on systematic study of cellulose," Journal of Applied and Natural Science, vol. 2, no. 2, p. 330, 2010.
H. Chen and H. Chen, "Chemical composition and structure of natural lignocellulose," Biotechnology of lignocellulose: Theory and practice, pp. 25-71, 2014.
F. L. Soares Junior et al., "Endo- and exoglucanase activities in bacteria from mangrove sediment," Braz J Microbiol, vol. 44, no. 3, pp. 969-76, 2013, doi: 10.1590/s1517-83822013000300048.
T. Perrot, M. Pauly, and V. Ramirez, "Emerging Roles of beta-Glucanases in Plant Development and Adaptative Responses," Plants (Basel), vol. 11, no. 9, p. 1119, Apr 20 2022, doi: 10.3390/plants11091119.
R. Datta, "Enzymatic degradation of cellulose in soil: A review," Heliyon, vol. 10, no. 1, p. e24022, Jan 15 2024, doi: 10.1016/j.heliyon.2024.e24022.
X. H. Li et al., "Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet," Microbiol Res, vol. 165, no. 3, pp. 190-8, Mar 31 2010, doi: 10.1016/j.micres.2009.04.001.
A. Kanti, N. Sukarno, E. Sukara, and L. K. Darusman, "Cellulolytic Yeast Isolated From Raja Ampat Indonesia," in Annales Bogorienses, 2012, vol. 16, no. 1, pp. 27-34.
D. Zahidah and M. Shovitri, "Isolasi, karakterisasi dan potensi bakteri aerob sebagai pendegradasi limbah organik," Jurnal sains dan seni ITS, vol. 2, no. 1, pp. E12-E15, 2013.
S. A. Yogyaswari, M. I. Rukmi, and B. Raharjo, "Ekplorasi bakteri selulolitik dari cairan rumen sapi Peranakan Fries Holland (PFH) dan Limousine Peranakan Ongole (LIMPO)," Jurnal Akademika Biologi, vol. 5, no. 4, pp. 70-80, 2016.
R. Sánchez-Clemente, M. I. Igeño, A. G. Población, M. I. Guijo, F. Merchán, and R. Blasco, "Study of pH changes in media during bacterial growth of several environmental strains," in Proceedings, 2018, vol. 2, no. 20: MDPI, p. 1297.
R. Simanungkalit, D. A. Suriadikarta, R. Saraswati, D. Setyorini, and W. Hartatik, "Pupuk organik dan pupuk hayati," Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Bogor, vol. 312, 2006.
M. Isgitani, S. Kabirun, and S. Siradz, "Pengaruh Inokulasi Bakteri Pelarut Fosfat TerhadapPertumbuhan Sorghum Pada Berbagai Kandungan P Tanah," Jurnal Ilmu Tanah dan Lingkungan, vol. 5, no. 2005, 2005.
B. Raharjo, "Pelarutan fosfat anorganik oleh kultur campur jamur pelarut fosfat secara in vitro," Jurnal Sains dan Matematika, vol. 15, no. 2, pp. 45-54, 2007.
S. Zhang, N. Merino, A. Okamoto, and P. Gedalanga, "Interkingdom microbial consortia mechanisms to guide biotechnological applications," Microb Biotechnol, vol. 11, no. 5, pp. 833-847, Sep 2018, doi: 10.1111/1751-7915.13300.
W. Elhaissoufi, C. Ghoulam, A. Barakat, Y. Zeroual, and A. Bargaz, "Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity," J Adv Res, vol. 38, pp. 13-28, May 2022, doi: 10.1016/j.jare.2021.08.014.
N. Prabhu, S. Borkar, and S. Garg, "Phosphate solubilization by microorganisms: overview, mechanisms, applications and advances," Advances in Biological Science Research: A Practical Approach, pp. 161-176, 2019, doi: 10.1016/B978-0-12-817497-5.00011-2.
E. T. Alori, B. R. Glick, and O. O. Babalola, "Microbial phosphorus solubilization and its potential for use in sustainable agriculture," Frontiers in microbiology, vol. 8, p. 971, 2017.
R. A. Raju and M. N. Reddy, "Effect of rock phosphate amended with phosphate solubilizing bacteria and farmyard manure in wetland rice (Oryza sativa)," Indian Journal of Agricultural Sciences, vol. 69, no. 6, pp. 451-453, Jun 1999.
S. L. Tisdale, W. L. Nelson, and J. D. Beaton, Soil fertility and fertilizers. 1985.
A. Kanti, "Candida sp. yeast solubilizing phosphate isolated from soil in Wamena Biological Garden, Papua," Biodiversitas Journal of Biological Diversity, vol. 7, no. 2, 2006.
S. Djuniwati and H. B. Pulunggono, "Pengaruh Pemberian Bahan Organik (Centrosema pubescens) dan Fosfat Alam terhadap Aktivitas Fosfatase dan Fraksi P Tanah Latosol di darmaga, Bogor," 2012.
Copyright (c) 2023 Journal of Bio-molecule Research And Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COPYRIGHT NOTICE
1. By submitting the article toJournal of Bio-Molecule Research and Engineering [JBIOME], the author has agreed to transfer some of the copyrights to the publisher of the research chemistry journal, Universitas Airlangga, indicated in the Copyright Transfer Agreement.
2. Authors still retain significant rights to use and share their own published articles for non-commercial purposes subject to Creative Commons Attribution-NonComercial-ShareALike 4.0 International License
3. All publications (printed/electronic) are open access for educational purposes, research, library, and other non-commercial purposes. Besides the purposes mentioned above, the editorial board is not responsible for copyright violations.