Perbedaan Antara Jumlah Sel T Subset Gamma-Delta di Darah Tepi pada Penderita Tuberkulosis dan Orang dengan Latent Tuberculosis Infection

Ryzky Widi Atmaja, Jusak Nugraha

= http://dx.doi.org/10.20473/bsn.v18i2.3030
Abstract views = 282 times | views = 409 times

Abstract


Abstrak

 

Latar Belakang. Imunitas memiliki peranan penting untuk melindungi host dari bacilli Mycobacterium tuberculosis (M.tb), bakteri Obligat  intraseluler  yang  menyebabkan  Tuberkulosis  (TB)  dan  latent  tuberculosis  infection  (LTBI).  Sel  T  subset  gamma-delta (T-γδ) adalah sel-sel potensial tersembunyi yang bermain peran di imunitas innate dan adaptive pada TB. Tetapi, hingga kini perananya   di   LTBI   masih   menjadi   misteri.   Bahan   dan   Metode.   Penelitian   dilakukan   dengan   melibatkan   10 penderita  TB serta 10 orang dengan LTBI. Mereka didapatkan dari Rumah Sakit Paru Surabaya melalui suatu persetujuan kelaikan etik   dari  Universitas  Airlangga.  Sampel-sampel  tersebut  akan  dihitung  jumlah  sel  T-γδ  menggunakan  F A C S C a l i b u r. Hasil.   Jumlah   sel   T-γδ   meningkat   pada   TB   (10,7%)   dan   LTBI   (15, 4%).   Jumlah   dari   kedua   kelompok   tersebut melebihi   rerata   normal   di   darah   tepi   (1% - 5%).   Kesimpulan.   Penigkatan   jumlah   sel   T-γδ   pada   TB   disebabkan melimpahnya kadar IL-12 yang dilepas oleh makrofag selama infeksi. Sementara, peningkatan jumlah sel T-γδ pada LTBI diasumsikan    karena    banyaknya    heat    shock    protein    (HSPs)    yang    dilepas    oleh    M.tb    di    bawah    kondisi    stres. ...

Kata  kunci:  tuberkulosis,  latent  tuberculosis  infectionMycobacterium  tuberclosis,  sel  T  subset  gamma-d e l t a.


Full Text:

PDF

References


Daftar Pustaka

赤川清子 [Akagawa K]. 2012. 結核の免疫 [Imunitas Tuberkulosis]. Kekkaku, 2: 61-70.

Briken V, Porcelli SA, Besra GS, Kremer L. 2004. Mycobacterial Lipoarabinomannan and Related Lipoglycans: from Biogenesis to Modulation of the Immune Response. Mol. Microbiol, 35: 391-403.

Caccamo N, Meraviglia S, Ferlazzo V et al. 2005. Differential Requirement for Antigen of Homeostatic Cytokine for Proliferation and Differentiation of Human Vγ9Vδ2 Naive, Memory, and Effector T Cell Subsets. Eur. J. Immunol, 35: 1764-1772.

Cassetti R, Martino A. 2008. The Plasticity of Gamma-Delta T Cells: Innate Immunity, Antigen Presentation, and New Immunotherapy. Cell. Mol. Immunol, 5: 161-170.

Chan J, Flynn JL. 2004. The Immunological Aspects of Latency in Tuberculosis. Clin. Immunol, 110: 2-12.

Derrick SC, Morris SL. 2007. The ESAT-6 Protein of Mycobacterium tuberculosis Induces Apoptosis of Macrophages by Activating Capsase Expression. Cell. Microbiol, 9: 1547-1555.

Co DO, Hogan LH, Kim SI, Sandor M. 2004. Mycobacterial Granulomas: Keys to a Long-Lasting Host-Pathogen Relationship. Clin. Immunol, 113: 130-136.

Druszczynska M, Kowalewich0Kulbat M, Pol M, Wlodarczyk M, Rudnicka W. 2012. Latent M. tuberculosis Infection – Pathogenesis, Diagnosis, Treatment, and Prevention Strategies. PJM, 61: 3-10.

Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. 1999. Consensus Statement. Global Burden of Tuberculosis: Estimated Insidence, Prevalence, and Mortality by County. JAMA, 282: 677-686.

Dyrhol-Riise AM, Gran G, Wentzel-Larsen T, Bloomberg B, Haanshuus CG, Morkve O. 2010. Diagnosis and Follow-up of Treatment of Latent Tuberculosis: The Utility of the QuantiFERON TB Gold in-Tube Assay in Outpatients Form a Tuberculosis Low-Endemic Country. BMC. Infect. Dis, 10: 57-65.

Gertner J, Scotet M, Poupot M, Bonneville M, Fournie JJ. 2007. Lymphocytes: Gamma-Delta. In: Roitt’s Essential Immunology, 12th Edition. Encyclopedia of Life Science. pp. 1-10. Available in: www.roitt.com/elspdf/lymphocytes_gamma_delta.pdf.

Gideon HP, Flynn JL. 2011. Latent Tuberculosis: What the Host ‘Sees’? Immunol. Res, 50: 202-212.

Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, de Libero G. 2003. Human T Cell Receptor Gammadelta T Cells Recognize Endogenous Mevalonate Metabolites in Tumor Cells. J. Exp. Med, 197: 163-168.

Gogoi D, Chiplunkar SV. 2013. Targeting Gamma-Delta T Cells for Cancer Immunotherapy: Bench to Bedside. IJMR, 138: 755-761.

Grosset J. 2003. Mycobacterium tuberculosis in the Extracellular Compart-ment: an Underestiated Adversary. Antimicrob. Agents. Chemother, 47: 833-836.

Hanekom WA, Mendillo M, Manca C et al. 2003. Mycobacterium tuberculosis Inhibits Maturation of Human Monocyte-Derived Dendritic Cells in Vitro. J. Infect. Dis, 188: 257-266.

Hartmann P, Becker R, Franzen C et al. 2001. Phagocytosis and Killing of Mycobacterium avium Complex by Human Neutrophils. J. Leuko. Bio, 69: 397-404.

Itohara S, Farr AG, Lafaille JJ, Bonneville M, Takagaki Y, Haas W, Tonegawa S. 1990. Homing of Gamma-Delta Thymocyte Subset with Homogenous T-Cell Receptors to Mucosal Epithelial. Nature, 343: 754-757.

Jensen KD, Su X, Shin S et al. 2008. Thymic Selection Determines Gamma-Delta T Cell Effector Fate: Antigen-Naive Cells Make Interleukin-17 and Antigen-Experienced Cells Make Interferon Gamma. Immunity, 29: 90-100.

Junqueira-Kipnis AP, Kipnis A, Jamieson A, Juarerro MG, Diefenbach A, Raulet DH, Turner J, Orme IM. 2003. NK Cells Respond to Pulmonary Infection with Mycobacterium tuberculosis, but Play a Minimal Role in Protection. J. Immunol, 171: 6039-6045.

Kaufmann SHE. 2012. Mycobacterium tuberculosis: Success Through Dormancy. FEMS. Microbiol. Rev, 36: 514-532.

Kawai T, Akira S. 2010. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors. Nat. Rev. Immun, 11: 373-384.

Kinhikar AG, Verma I, Chandra D et al. 2010. Potential Role for ESAT-6 in Dissemination of M. tuberculosis via Human Lung Epithelial Cells. Mol. Microbiol, 75: 92-106.

Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ. 1999. Human Toll-like Receptors Mediate Cellular Activation by Mycobacterium tuberculosis. J. Immunol, 163: 3920-3927.

Murugaiyan G and Saha B. 2008. Protumor vs Antitumor Function of IL-17. J. Immunol, 183: 4169-4175.

O’Brien RL, Happ MP, Dallas A, Palmer E, Kubo R, Born WK. 1989. Stimulation of a Major Subset of Lymphocytes Expressing T Cell Receptor Gamma-Delta by an Antigen Derived from Mycobacterium tuberculosis, Cell, 57: 667-674.

Ogata K, Linzer BA, Zuberi RI, Ganz T, Lehrer RI, Catanzaro A. 1992. Activity of Defensins from Human Neutrophilic Granulocytes Againts Mycobacterium avium – Mycobacterium intracellulare. Infect Immun, 60: 4720-4725.

Peyron P, Vaubourgeix J, Poquet Y et al. 2008. Foamy Macrophages from Tuber-culosis Patients Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence. PLoS. Pathog, 4: 100204.

Serbina NV, Lazarevic V, Flynn JL. 2001. CD4+ T Cells are Required for the Development of Cytotoxic CD8+ T Cells during Mycobacterium tuberculosis Infection. J. Immunol, 167: 6991-7000.

Shibata K. 2012. Close Link Between Development and Function of Gamma-Delta T Cells. Microbiol. Immunol, 56: 217-227.

Turcinovich G, Hayday AC. 2011. Skint-1 Identifies a Common Molecular Mechanism for the Development of Interferon-Gamma-Secreting versus Interlekin-17-Secreting Gamma-Delta T Cells. Immunity, 35: 59-68.

Umemura M, Yahagi A, Hamada S, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakra Y, Matsuzaki G. 2007. IL-17-Mediated Regulation of Innate and Acquired Immune Response Againts Pulmonary Mycobacterium bovis Bacillus Calmette-Guerin Infection. J. Immunol, 178: 3786, 3796.

WHO. 2015. Global Tuberculosis Report. Genewa: World Health Organization. pp. 1-134. Available in: http://www.who.int/tb/publications/global_report/gtbr15_main_text.pdf.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Biosains



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.