Dapagliflozin Use in Heart Failure with Reduced Ejection Fraction Accompanied by Type 2 Diabetes Mellitus: A Systematic Review
Versions
- 2022-03-31 (2)
- 2022-03-31 (1)
Downloads
Abstract: Heart failure patients with reduced ejection fraction (HFrEF) respond well to pharmacological therapy and show a better prognosis. Heart failure patients with reduced ejection fraction and type 2 diabetes who were given SGLT-2 inhibitor therapy showed a strong and consistent reduction in the risk of death and hospitalization. The therapy that has recently begun to be investigated for its benefits for heart failure from the SGLT-2 inhibitor class is Dapagliflozin. The systematic review aims to analyze the effect of Dapagliflozin on the prognosis of HFrEF patients with type 2 diabetes mellitus. Material and Methods: The literature was searched from e-database PubMed, ScienceDirect, and ClinicalTrial.gov. Quality assessment was done using the Critical Appraisal Skills Program (CASP) Randomized Controlled Trial Standard Checklist. Results: A total of 22,167 patients from 4 RCTs eligible studies were included. The analysis results of all of the included studies indicate that Dapagliflozin affected the patient's prognosis. Two studies discuss mortality and hospitalization, and two studies discuss symptoms, functional status, and Quality of Life (QoL). Conclusion: Dapagliflozin can improve the prognosis of HFrEF patients with type 2 DM. The improved prognosis includes reduced mortality, reduced hospitalizations by minimizing disease worsening, reducing symptoms, improving functional status and QoL.
Keyword: Cardiovascular disease, Dapagliflozin, Diabetes, Prognosis, SGLT 2 inhibitor
. Savarase G., Lars H., 2017. ‘Global Public Health Burden of Heart Failure'. Cardiac Failure Review, vol 3(1), pp 7-11. https://doi.org/10.15420/cfr.2016:25:2
. Inamdar A., Ajinkya C., 2016. ‘Heart Failure: Diagnosis, Management and Utilization'. Journal of Clinical Medicine, vol 5(7), pp 62. https://doi.org/10.3390/jcm5070062
. Lueder T., Stevan A., 2018. ‘The burden of heart failure in the general population: a clearer and more concerning picture. Jurnal of Thoracic Disease, vol 10(17), pp 1934-1937. doi: 10.21037/jtd.2018.04.153
. Dunlay, S. M., Givertz, M. M., Aguilar, D., Allen, L. A., Chan, M., Desai, A. S., Deswal, A., Dickson, V. V., Kosiborod, M. N., Lekavich, C. L., McCoy, R. G., Mentz, R. J., Piña, I. L., & American Heart Association Heart Failure and Transplantation Committee of the Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; and the Heart Failure Society of America 2019. Type 2 Diabetes Mellitus and Heart Failure: A Scientific Statement From the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation, 140(7), e294–e324. https://doi.org/10.1161/CIR.0000000000000691
. Bonara B., Angelo A., Gian P., 2020. ‘Extraglycemic Effects of SGLT2 Inhibitors: A Review of the Evidence'. Diabetes, Metabolic Syndrome and Obesity, vol 13, pp 161-174. https://doi.org/10.2147/DMSO.S233538
. Kato E., et al., 2019. Effect of Dapagliflozin on Heart Failure and Mortality in Type 2 Diabetes Mellitus. Circulation, 139, pp. 2528-2536. https://doi.org/10.1161/CIRCULATIONAHA.119.040130
. McMurray, Solomon S., Inzucchi L., 2019. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. The New England Journal of Medicine, 381(21). DOI: 10.1056/NEJMoa1911303
. Kosiborod M., Pardeep S., et al., 2020. Effects of Dapagliflozin on Symptoms, Function, and Quality of Life in Patient With Heart Failure and Reduced Ejection Fraction. Circulation, 141, pp. 90-99. https://doi.org/10.1161/CIRCULATIONAHA.119.044138
. Nassif M., et al., 2019. Dapagliflozin Effects on Biomarker, Symptoms, and Functional Status in Patients With Heart Failure with Reduced Ejecetion Fraction. Circulation, 140, pp. 1463-1476. https://doi.org/10.1161/CIRCULATIONAHA.119.042929
. Vaduganathan M., and Javed B., 2019. SGLT-2 inhibitors in heart failure: a new therapeutic avenue. Nature Medicine, 25, pp. 1648-1654. https://doi.org/10.1038/s41591-019-0647-4
. Paulus W., and Elisa D., 2018. Distinct Myocardial Targets for Diabetes Therapy in Heart Failure With Preserved or Reduced Ejection Fraction. Journals of the American College of Cardiology, 6(1), pp. 1-7. http://dx.doi.org/10.1016/j.jchf.2017.07.012
. Bernardi S., Andrea M., Giulia Z., Riccardo C., Bruno F., 2016. Update on RAAS Modulation for the Treatment of Diabetic Cardiovascular Disease. Journal of Diabetes Research. https://doi.org/10.1155/2016/8917578
. Singh V., Anjana B., Nirmal S., Amteshwar S., 2014. Advanced Glycation End Products and Diabetic Complications. The Korean Journal of Physiology & Pharmacology, 18(1), pp. 1-14. http://dx.doi.org/10.4196/kjpp.2014.18.1.1
. Spreeuwel A., Noortje A., Basriaan J., Annemieke A., Marie J., Carlijn V., 2017. Mimicking Cardiac Fibrosis in a Dish: Fibroblast Density Rather than Collagen Density Weakens Cardiomyocyte Function. Journal of Cardiovascular Translational Research, 10(2), pp. 116-127. https://link.springer.com/article/10.1007/s12265-017-9737-1
. Oever I., Hennie G., Mike T., Suat S., 2010. Endothelial Dysfunction, Inflammation, and Apoptosis in Diabetes Mellitus. Mediators of Inflammation Journal, vol. 2010, Article ID 792393, 15 pages, 2010. https://doi.org/10.1155/2010/792393
. Resendiz S., Monica M., Whendy E., Gustavo E., Julian R., Oscar A., Oscar P., William A., Klaus T., Hector A., 2018. Responses of Endothelial Cells Towards Ischemic Conditioning Following Acute Myocardial Infarction. Conditioning Medicine Journal, 1(5), pp. 247-258. https://www.researchgate.net/publication/327546588
. Jia G., Adam W., James R., 2017. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia, 61, pp. 21-28. https://link.springer.com/article/10.1007/s00125-017-4390-4
. Lopaschuck G., and Subodh V., 2020. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors. Journals of the American College of Cardiology, 5(6), pp. 632-644. https://doi.org/10.1016/j.jacbts.2020.02.004
. Zinman B., Christoph W., John M., David F., 2015. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. The New England Journal of Medicine, 373 (22). http://dx.doi.org/10.1056/NEJMoa1504720
. Radholm K., Gemma F., Vlado P., Scott D., Kenneth W., Dick Z., Greg F., Terrance D., Wayne S., Mehul D., David R., Bruce N., 2018. Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus: Results From the CANVAS Program. Circulation, 138, pp. 458-468. https://doi.org/10.1161/CIRCULATIONAHA.118.034222
. Butler J., Stefan D., Gerasimos F., Muhammad S., Joao P., Stuart J., Nadia G., James L., Ileana L., Carolyn S., Piotr P., Naveed S., Subodh V., Martina B., Waheed J., Ola V., Barbara P., Cordula Z., Faiez Z., Milton P., 2021. Empagliflozin and health-related quality of life outcomes in patients with heart failure with reduced ejection fraction: the EMPEROR-Reduced trial. European Hart Journal, 43(13), pp. 1203-1212. https://doi.org/10.1093/eurheartj/ehaa1007
. Rosano G., Cristiana V., Petar M., 2016. ‘Heart Failure in Patients with Diabetes Mellitus'. Cardiac Failure Review, vol 3(1), pp 52–5. http://dx.doi.org/10.15420/cfr.2016:20:2
. Singla P., 2020. Farxiga (dapagliflozin). https://www.medicalnewstoday.com/articles/326257#weight-loss
. Obermeier M, Yao M, Khanna A, Koplowitz B, Zhu M, Li W, Komoroski B, Kasichayanula S, Discenza L, Washburn W, Meng W, Ellsworth BA, Whaley JM, Humphreys WG. In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab Dispos. 2010 Mar;38(3):405-14. https://doi.org/10.1124/dmd.109.029165
. Shah, A. D., Langenberg, C., Rapsomaniki, E., Denaxas, S., Pujades-Rodriguez, M., Gale, C. P., Deanfield, J., Smeeth, L., Timmis, A., & Hemingway, H. 2015. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1•9 million people. The lancet. Diabetes & endocrinology, 3(2), 105–113. https://doi.org/10.1016/S2213-8587(14)70219-0
. Kranenburg G., Yolanda V., Joep V., Hendrik M., Gert J., L. Jaap, Frank L., Jan W., 2015. The Relation Between HbA1c and Cardiovascular Events in Patients With Type 2 Diabetes With and Without Vascular Disease. Diabetes Care Journal, vol. 38(10), pp. 1930-1936. https://doi.org/10.2337/dc15-0493
. Castagno, D., Baird-Gunning, J., Jhund, P. S., Biondi-Zoccai, G., MacDonald, M. R., Petrie, M. C., Fiorenzo G., McMurray, J. J. V. 2011. Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: Evidence from a 37,229 patient meta-analysis. American Heart Journal, 162(5), 938–948.e2. https://doi.org/10.1016/j.ahj.2011.07.030
. The ADVANCE Collaborative Group. 2008. Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 2008; 358:2560-2572. DOI: 10.1056/NEJMoa0802987
. Cowie, M. R., & Fisher, M. 2020. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nature reviews. Cardiology, 17(12), 761–772. https://doi.org/10.1038/s41569-020-0406-8
. Petrie, M. C., Verma, S., Docherty, K. F., Inzucchi, S. E., Anand, I., Belohlávek, J., Böhm, M., Chiang, C. E., Chopra, V. K., de Boer, R. A., Desai, A. S., Diez, M., Drozdz, J., Dukát, A., Ge, J., Howlett, J., Katova, T., Kitakaze, M., Ljungman, C., Merkely, B., ... McMurray, J. 2020. Effect of Dapagliflozin on Worsening Heart Failure and Cardiovascular Death in Patients With Heart Failure With and Without Diabetes. JAMA, 323(14), 1353–1368. https://doi.org/10.1001/jama.2020.1906
. List J., Vincent W., Enrique M., Weihua T., Fred T., 2009. Sodium-Glucose Cotransport Inhibition With Dapagliflozin in Type 2 Diabetes. Diabetes Care Journal, vol. 32(4), pp. 650-657. https://doi.org/10.2337/dc08-1863
. Zelniker, T. A., Raz, I., Mosenzon, O., Dwyer, J. P., Heerspink, H., Cahn, A., Goodrich, E. L., Im, K., Bhatt, D. L., Leiter, L. A., McGuire, D. K., Wilding, J., Gause-Nilsson, I., Langkilde, A. M., Sabatine, M. S., & Wiviott, S. D. 2021. Effect of Dapagliflozin on Cardiovascular Outcomes According to Baseline Kidney Function and Albuminuria Status in Patients With Type 2 Diabetes: A Prespecified Secondary Analysis of a Randomized Clinical Trial. JAMA cardiology, 6(7), 801–810. https://doi.org/10.1001/jamacardio.2021.0660
. Docherty, K. F., Jhund, P. S., Bengtsson, O., DeMets, D. L., Inzucchi, S. E., Kí¸ber, L., Kosiborod, M. N., Langkilde, A. M., Martinez, F. A., Sabatine, M. S., Sjöstrand, M., Solomon, S. D., McMurray, J., & DAPA-HF Investigators and Committees 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.047480
Copyright (c) 2022 Sinta Dwi Juniar, Mochamad Yusuf Alsagaff, Pudji Lestari, Budi Susetyo Pikir
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Cardiovascular and Cardiometabolic Journal (CCJ) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
-
Authors who publish with Cardiovascular and Cardiometabolic Journal (CCJ) agree to the following terms:
-
The journal allows the author to hold the copyright of the article without restrictions.
-
The journal allows the author(s) to retain publishing rights without restrictions.
-
The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution ShareAlike 4.0 International License (CC BY-SA).