Analisis Kestabilan Model Matematika Ko-infeksi Virus Influenza A dan Pneumokokus pada Sel Inang
Downloads
Asaduzzaman S. M., Ma J., dan Driessche P. V. D., 2015, The coexistence or replacement of two subtypes of influenza, Mathematical Biosience, 270: 1-9.
Khanh N. H., 2016, Stability analysis of an influenza virus model with disease resistance, Journal of the Egyptian Mathematical Society, 24:193-199.
WHO, 2018, Influenza (Seasonal), di https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal) (diakses pada 5 April 2019).
Lamb K. E., Greenhalgh D., dan Robertson C., 2011, A Simple mathematical model for genetic effect in pneumococcal carriage and transmission, Journal of Computation and Applied Mathematics, 235:1812-1818.
Rudd J.M., Ashar H. K., Chow V. TK., dan Teluguakula N., 2016, Lethal synergism between influenza and Streptococcus pneumoniae, J Infect Pulm Dis, 2(2):1-13.
Gupta R.K., George R., dan Nguyen-Van-Tam J. S., 2008, Bacterial pneumonia and pandemic influenza planning, Emerging Infectious Diseases, 14(8):1187-1192.
American Lung Association (ALA), 2015, Trends in pneumonia and influenza morbidity and mortality, [Internet], Tersedian di: https://www.lung.org/assets/documents/research/pi-trend-report.pdf.
Crowe S., Utley M.,Walker G., Grove P., dan Pagel C., 2011, A model to evaluate mass vaccination against pneumococcus as a countermeasure against pandemic influenza, Vaccine, 29:5065-5077.
Cheng Y-H., You S-H., Lin Y-J., Chen S-C., Chen W-Y., Chou W-C., Hsieh N-H., dan Liao C-M., 2017, Mathematical modelling of postcoinfection with influenza A virus and strepcococcus pneumoniae, with implications for pneumonia and COPD-risk assessment, International Journal of COPD, 12:1973-1988.
Mbabazi F. K., Mugisha J.Y.T., dan Kimathi M., 2018, Modelling the within-host co-infection of influenza A virus and pneumococcus, Applied Mathematics and Computation, 339:488-506.
Driessche P. van den, dan Watmough J., 2002, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180:29-48.
Chitnis, N., Hyman, J.M., dan Cushing, 2008, Determine important parameters in the spread of malaria through the sensitivity analysis of mathematics model, Bulletin of Mathematical Biology,70:1272-1296.