Chronic inflammation and gut microbiota at a glance: Insights into fertility barriers
Background: The acrosome reaction (AR) is a crucial step in fertilization, enabling sperm to penetrate the oocyte's protective layers, but various elements can hinder AR.
Reviews: Fertilization is a fundamental process in mammalian reproduction, involving the fusion of a sperm with oocyte. To achieve this, sperm must undergo capacitation, a series of biochemical changes that prepare them for fertilization. Once capacitated, sperm can penetrate the protective layers of the oocyte, after capacitation, sperm bind to receptors on the zona pellucida (ZP), a protective layer surrounding the egg. This binding triggers the acrosome reaction (AR), releasing enzymes that help the sperm penetrate the protective layers. Once the sperm has penetrated, it fuses with the oocyte's plasma membrane, delivering its genetic material. Anti-sperm antibodies (ASA) can directly bind to sperm, hindering their function and ability to undergo AR. Chronic inflammation, often associated with conditions like diabetes and obesity, with chronic hyperglycemia producing advanced glycation end products (AGEs) can create a pro-inflammatory environment that negatively impacts sperm parameter and function. Additionally, gut microbiota (GM) dysbiosis has been linked to chronic inflammation and may contribute to infertility.
Summary: Proper AR is essential for successful fertilization, but presence of ASA, GM dysbiosis, and chronic inflammation may hinder fertility. The evidence suggests improving inflammation by proper GM symbiosis may improve sperm parameter and fertility.
14.2: Fertilization - Biology LibreTexts [Internet]. [cited 2024 Nov 27]. Available from: https://bio.libretexts.org/Courses/Lumen_Learning/Anatomy_and_Physiology_II_(Lumen)/14%3A_Module_12-_Development_and_Inheritance/14.02%3A_Fertilization
Santhosh S, Ebert D, Janicke T. Sperm competition favours intermediate sperm size in a hermaphrodite1. J Evol Biol [Internet]. 2024 Jul 1 [cited 2024 Nov 27];37(7):829–38. Available from: https://pubmed.ncbi.nlm.nih.gov/38738700/
Bhakta HH, Refai FH, Avella MA. The molecular mechanisms mediating mammalian fertilization. Development (Cambridge) [Internet]. 2019 Aug 1 [cited 2024 Nov 27];146(15). Available from: https://dx.doi.org/10.1242/dev.176966
Brucker C, Lipford GB. The human sperm acrosome reaction: physiology and regulatory mechanisms. An update. Hum Reprod Update [Internet]. 1995 Jan 1 [cited 2024 Nov 27];1(1):51–62. Available from: https://dx.doi.org/10.1093/humupd/1.1.51
Moreno RD, Alvarado CP. The mammalian acrosome as a secretory lysosome: new and old evidence. Mol Reprod Dev [Internet]. 2006 Nov [cited 2024 Nov 27];73(11):1430–4. Available from: https://pubmed.ncbi.nlm.nih.gov/16894549/
Vickram AS, Dhama K, Chakraborty S, Samad HA, Latheef SK, Sharun K, et al. Role of Antisperm Antibodies in Infertility, Pregnancy, and Potential for Contraceptive and Antifertility Vaccine Designs: Research Progress and Pioneering Vision. Vaccines (Basel) [Internet]. 2019 Sep 1 [cited 2024 Nov 27];7(3):116. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6789593/
Vazquez-Levin MH, Marín-Briggiler CI, Veaute C. Antisperm antibodies: invaluable tools toward the identification of sperm proteins involved in fertilization. Am J Reprod Immunol [Internet]. 2014 [cited 2024 Nov 27];72(2):206–18. Available from: https://pubmed.ncbi.nlm.nih.gov/24863647/
Lu JC, Huang YF, Lu NQ. Antisperm immunity and infertility. Expert Rev Clin Immunol [Internet]. 2008 Jan [cited 2024 Nov 28];4(1):113–26. Available from: https://pubmed.ncbi.nlm.nih.gov/20477591/
Dondero F, Lenzi A, Gandini L, Lombardo F. Immunological infertility in humans. Exp Clin Immunogenet. 1993;10(2):65–72.
Francavilla F, Marrone V, Romano R, Properzi G, Santucci R, Ruvolo G. Interference of antisperm antibodies with the induction of the acrosome reaction by zona pellucida (ZP) and its relationship with the inhibition of ZP binding. Fertil Steril [Internet]. 1997 [cited 2024 Nov 28];67(6):1128–33. Available from: https://pubmed.ncbi.nlm.nih.gov/9176455/
Brázdová A, Zídková J, … GPJJ of, 2012 undefined. IgG, IgA and IgE Reactivities to Sperm Antigens in Infertile Women. platform.almanhal.comA Brázdová, J Zídková, G Peltre, Z Ulčová-GallováJordan Journal of Biological Sciences, 2012•platform.almanhal.com [Internet]. [cited 2024 Nov 28]; Available from: https://platform.almanhal.com/Files/2/27856
SINISI AA, FINIZIO B DI, PASQUALI D, SCURINI C, D’APUZZO A, BELLASTELLA A. Prevalence of antisperm antibodies by SpermMARtest in subjects undergoing a routine sperm analysis for infertility. Int J Androl [Internet]. 1993 [cited 2024 Nov 28];16(5):311–4. Available from: https://pubmed.ncbi.nlm.nih.gov/8276524/
Barbonetti A, Castellini C, D’Andrea S, Cordeschi G, Santucci R, Francavilla S, et al. Prevalence of anti-sperm antibodies and relationship of degree of sperm auto-immunization to semen parameters and post-coital test outcome: a retrospective analysis of over 10 000 men. Hum Reprod [Internet]. 2019 May 1 [cited 2024 Nov 28];34(5):834–41. Available from: https://pubmed.ncbi.nlm.nih.gov/30927424/
Zini A, Fahmy N, Belzile E, Ciampi A, Al-Hathal N, Kotb A. Antisperm antibodies are not associated with pregnancy rates after IVF and ICSI: systematic review and meta-analysis. Human Reproduction [Internet]. 2011 Jun 1 [cited 2024 Nov 28];26(6):1288–95. Available from: https://dx.doi.org/10.1093/humrep/der074
Schuppe HC, Meinhardt A, Allam JP, Bergmann M, Weidner W, Haidl G. Chronic orchitis: a neglected cause of male infertility? Andrologia [Internet]. 2008 Apr [cited 2024 Nov 28];40(2):84–91. Available from: https://pubmed.ncbi.nlm.nih.gov/18336456/
King TC. Inflammation, Inflammatory Mediators, and Immune-Mediated Disease. Elsevier’s Integrated Pathology. 2007 Jan 1;21–57.
Sebire N. Pathology. Basic Science in Obstetrics and Gynaecology: A Textbook for MRCOG Part 1, Fourth Edition. 2010 Jan 1;97–106.
Wdowiak A, Gujski M, Bojar I, Raczkiewicz D, Bartosińska J, Wdowiak-Filip A, et al. Chronic Inflammation Impairs Male Fertility—A Case-Control Study in Ulcerative Colitis Patients. J Clin Med [Internet]. 2021 Apr 1 [cited 2024 Nov 28];10(7):1460. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8038073/
Browning J, Ghanim M, Jagoe W, Cullinane J, Glover LE, Wingfield M, et al. Membrane-bound receptor for advanced glycation end products (RAGE) is a stable biomarker of low-quality sperm. Hum Reprod Open [Internet]. 2024 [cited 2024 Nov 28];2024(4). Available from: https://pubmed.ncbi.nlm.nih.gov/39553285/
Mallidis C, Agbaje IM, Rogers DA, Glenn J V., Pringle R, Atkinson AB, et al. Advanced glycation end products accumulate in the reproductive tract of men with diabetes. Int J Androl. 2009 Aug;32(4):295–305.
Vignera S La, Mauro M Di, … RCLC, 2009 undefined. Diabetes worsens spermatic oxidative" stress" associated with the inflammation of male accessory sex glands. europepmc.orgS La Vignera, M Di Mauro, R Condorelli, S La Rosa, E VicariLa Clinica Terapeutica, 2009•europepmc.org [Internet]. [cited 2024 Nov 28]; Available from: https://europepmc.org/article/med/19997681
Condorelli RA, Vignera S La, Mongioì LM, Alamo A, Calogero AE. Diabetes mellitus and infertility: Different pathophysiological effects in type 1 and type 2 on sperm function. Front Endocrinol (Lausanne). 2018 May 25;9(MAY):356811.
Helli B, Kavianpour M, Ghaedi E, Dadfar M, Haghighian HK. Probiotic effects on sperm parameters, oxidative stress index, inflammatory factors and sex hormones in infertile men. Hum Fertil (Camb) [Internet]. 2022 [cited 2024 Nov 29];25(3):499–507. Available from: https://pubmed.ncbi.nlm.nih.gov/32985280/
Amabebe E, Robert FO, Agbalalah T, Orubu ESF. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr [Internet]. 2020 May 28 [cited 2024 Nov 29];123(10):1127–37. Available from: https://pubmed.ncbi.nlm.nih.gov/32008579/
Carbajo-Pescador S, Porras D, Garcia-Mediavilla MV, Martinez-Florez S, Juarez-Fernandez M, Cuevas MJ, et al. Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an in vivo model of early obesity and non-alcoholic fatty liver disease. Dis Model Mech [Internet]. 2019 May 1 [cited 2024 Nov 29];12(5). Available from: https://pubmed.ncbi.nlm.nih.gov/30971408/
Upadhyaya S, Banerjee G. Type 2 diabetes and gut microbiome: at the intersection of known and unknown. Gut Microbes [Internet]. 2015 Apr 22 [cited 2024 Nov 29];6(2):85–92. Available from: https://pubmed.ncbi.nlm.nih.gov/25901889/
Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 2019 7:1 [Internet]. 2019 Jun 13 [cited 2024 Nov 29];7(1):1–15. Available from: https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-019-0704-8
Copyright (c) 2024 Bondan Winarno, Ivan Angelo Albright, Evi Tjahyono, Muhammad Adamas, Januar Alfred Poli, Supardi Supardi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.