Growth and Lipid Profiles of Melosira sp. in response to Different Salinity Levels.
The Diatom of Melosira sp. is one of the potential microalgae candidates for future biofuel resource due to its high lipid profile and fatty acid content, high growth rate, and a quick deposition rate. Salinity stress is one of the environmental factors affecting the growth of microalgae and their lipid content. This research was conducted to identify the response of Melosira sp. treated with different salinity levels on the cell growth rate, biomass productivity, and lipid production. The microalgae cells were incubated for 8 days in 1 liter of F/2 growth medium with different salinity levels from 10 ppt to 35 ppt. Cell's growth, SGR, biomass, lipid, and water quality factors were measured during incubation. This study revealed that the growth pattern of Melosira sp. cells under various salinities was customarily similar. Observation in the 35 ppt salt presenting the biomass productivity was 711.04 ± 69.38 mg.L-1 with lipid productivity which was 60.49 ± 1.72 mg.L-1. On the other hand, the observation of the lowest salt concentration displaying the biomass productivity was 316.64 ± 16.66 mg.L-1 with the lipid productivity which was 41.46 ± 6.94 mg.L-1. Hence, the results demonstrated that the lower salinity stress in 10 ppt enabled significant cell's lipid production than the higher salinity of Melosira sp. in F/2 medium. Furthermore, lipid productivity was uncorrelation with biomass production pattern. This information may be useful in optimizing Melosira sp. lipid performance as a supporting knowledge.
Andersen, R. A. 2005. Algal culturing techniques, Burlington, USA, Elsevier Academic Press.
Anwar, S. H., Harzaki, S., Sulaiman, M. I. and Rinanda, T. 2018. Utilization of different nitrogen sources for the growth of microalgae isolated from mangrove leaves in Banda Aceh - Indonesia. IOP Conference Series: Earth and Environmental Science, 207, pp.12049.10.1088/1755-1315/207/1/012049
Araujo, S. and Garcia, V. M. T. 2005. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture (Amsterdam, Netherlands), 246, pp.405-412.10.1016/j.aquaculture.2005.02.051
Atikij, T., Syaputri, Y., Iwahashi, H., Praneenararat, T., Sirisattha, S., Kageyama, H. and Waditee-Sirisattha, R. 2019. Enhanced lipid production and molecular dynamics under salinity stress in green microalga Chlamydomonas reinhardtii (137C). Marine drugs, 17(8), pp.484.10.3390/md17080484
Bligh, E. and Dyer, W. 1959. A rapid method of total lipid extraction and purification. J. Biochem. Physiol, 37, pp.911-917.10.1139/o59-099
Brzychczyk, B., Hebda, T. and Pedryc, N. 2020. The influence of artificial lighting systems on the cultivation of algae: The example of Chlorella vulgaris. Energies, 13, pp.5994.10.3390/en13225994
Church, J., Hwang, J.-H., Kim, K.-T., Mclean, R., Oh, Y.-K., Nam, B., Joo, J. C. and Lee, W. H. 2017. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresource Technology, 243, pp.147-153.https://doi.org/10.1016/j.biortech.2017.06.081
Collet, P., Lardon, L., Arnaud, H., Olivier, L., Steyer, J.-P. and Bernard, O. 2014. Biodiesel from microalgae e Life cycle assessment and recommendations for potential improvements. Renewable Energy, 71(C), pp.525-533.10.1016/j.renene.2014.06.009
Efe, Åž., Ceviz, M. A. and Temur, H. 2018. Comparative engine characteristics of biodiesels from hazelnut, corn, soybean, canola and sunflower oils on DI diesel engine. Renewable Energy, 119, pp.142-151.https://doi.org/10.1016/j.renene.2017.12.011
García, N., López-Elías, J. A., Miranda, A., Martínez-Porchas, M., Huerta, N. and García, A. 2012. Effect of salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases. Latin american journal of aquatic research, 40(2), pp.435-440.10.3856/vol40-issue2-fulltext-18
Graham, J. M., Graham, L. E., Zulki, S. B., Brian, F. P. X., Hoover, S. W. and Yoshitani, J. 2012. Freshwater diatoms as a source of lipids for biofuels. pp.419-428.10.1007/s10295-011-1041-5
Indrayani, Haslianti and Asriyana, A. 2018. Isolation and screening of marine microalgae from kendari waters, southeast sulawesi, Indonesia suitable for outdoor mass cultivation in hypersaline media. AACL Bioflux, 11(5), pp.1445-1455
Isnansetyo, A. and Kurniastuty 1995. Teknik Kultur Phytoplankton dan Zooplankton;Pakan Alami untuk Pembenihan Organisme Laut.
Khleoheh, N. M. and Esmaeli, F. 2009. Composition and frequency and impact of the salinity on distribution phytopankton in the Bahmanshir tidal river. Iranian Scientific Fisheries Journal, 18, pp.43-51
Kim, G., Lee, C.-H. and Lee, K. 2016. Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation. Korean Journal of Chemical Engineering, 33, pp.230-237.10.1007/s11814-015-0089-8
Kumar, S. D., Sojin, K., Santhanam, P., Dhanalakshmi, B., Latha, S. and Kim, M. 2020. Reciprocal response of nitrogen for enhancing growth and proximate compositions of marine microalga Tetraselmis sp. under low saline conditions. Indian Journal of Geo Marine Science 49, 3, 49, pp.26-332
Lavens, P. and Sorgeloos, P. 1996. Manual on the production and use of live food for aquaculture, FAO Fisheries Technical Paper No 361. pp.295
Lora-Vilchis, M. C., Huanacuni-Pilco, J. I., Lopez-Fuerte, F. O. and Perez-Rojas, C. A. 2018. Growth rate, lipid, fatty acids, and pigments content of Melosira moniliformis (Bacillariophyta) in laboratory cultures. Revista Latinoamericana de Biotecnología Ambiental y Algal, 9, pp.1-16
Lynn, S., Kilham, S., Kreeger, D. and Interlandi, S. 2000. Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). Journal of Phycology, 36, pp.510-522.10.1046/j.1529-8817.2000.98251.x
Mofijur, M., Rasul, M. G., Hassan, N. M. S. and Nabi, M. N. 2019. Recent Development in the Production of Third Generation Biodiesel from Microalgae. Energy Procedia, 156, pp.53-58.https://doi.org/10.1016/j.egypro.2018.11.088
Pal, S. and Azam, K. Evaluation of relationship between light intensity (lux) and growth of Chaetoceros muelleri. International Conference on Oceanography & Natural Disasters, 2013 Orlando. OMICS Group Conferences.
Pandit, P. R., Fulekar, M. H. and Karuna, M. S. L. 2017. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environmental science and pollution research international, 24, pp.13437-13451.10.1007/s11356-017-8875-y
Potapova, M. 2011. Patterns of Diatom Distribution In Relation to Salinity. In: J., S. and P., K. (eds.) The Diatom World: Cellular Origin, Life in Extreme Habitats and Astrobiology. Dordrecht: Springer.
Pratiwi, H., Damar, A. and Sulistiono, S. 2018. Phytoplankton community structure in the Estuary of Donan River, Cilacap, Central Java, Indonesia. Biodiversitas, 19, pp.2104-2110.10.13057/biodiv/d190616
Prayitno, J., Rahmasari, I. I. and Rifai, A. 2020. The effect of harvesting frequency on biomass production of Chlorella sp. and Melosira sp. for biological carbon capture. Jurnal Teknologi Lingkungan, 21(1), pp.23-30.https://doi.org/10.29122/jtl.v21i1.3777
Rizwan, M., Mujtaba, G., Rashid, N. and Lee, K. 2017. Enhancing Lipid Production of Dunaliella tertiolecta by Manipulating the Interactive Effect of Salinity and Nitrogen. Chemical and Biochemical Engineering Quarterly, 31, pp.199-207.10.15255/CABEQ.2017.1092
Rukminasari, N., Omar, S. A. and Lukman, M. 2021. Temperature and nitrate concentration effect on the abundance and growth rate of Melosira sp. Jurnal Biologi Lingkungan, Industri dan Kesehatan, 2, pp.185-194.https://doi.org/10.31289/biolink.v7i2.4054
Selvan, K. B., Revathi, M., Sobana Piriya, P., Thirumalai Vasan, P., Immuanual Gilwax Prabhu, D. and John Vennison, S. 2013. Biodiesel production from marine cyanobacteria cultured in plate and tubular photobioreactors. Indian Journal of Experimental Biology, 51, pp.262-268
Suharto 2017. Bioteknologi dalam Bahan Bakar Nonfosil, Yogyakarta, Andi Yogyakarta.
Sun, X.-M., Ren, L.-J., Zhao, Q.-Y., Ji, X.-J. and Huang, H. 2018. Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnology for biofuels, 11, pp.272.10.1186/s13068-018-1275-9
Tabernero, A., Martín Del Valle, E. M. and Galan, M. A. 2013. Microalgae technology: A patent survey. International Journal of Chemical Reactor Engineering, 11, pp.733-763.https://doi.org/10.1515/ijcre-2012-0043
Van De Vijver, B. and Crawford, R. M. 2020. Melosira jeanbertrandiana, a new Melosira species (Bacillariophyceae) from the sub-Antarctic region. Botany Letters, 167, pp.50-56.10.1080/23818107.2019.1688677
Vonshak, A. 1985. Micro-algae: Laboratory growth techniques and outdoor biomass production. In: Coombs, J., Hall, D. O., Long, S. P. and Scurlock, J. M. O. (eds.) Techniques in Bioproductivity and Photosynthesis (Second Edition). Pergamon.
Woelfel, J., Schoknecht, A., Schaub, I., Enke, N., Schumann, R. and Karsten, U. 2014. Growth and photosynthesis characteristics of three benthic diatoms from the brackish southern Baltic Sea in relation to varying environmental conditions. Phycologia, 53(6), pp.639-651.https://doi.org/10.2216/14-019.1
Wood, A. M., Everroad, R. C. and Wingard, L. M. 2005. Measuring growth rates in microalgal cultures, Burlington, Elsevier Academic Press.
Xin, L., Hu, H.-Y., Ke, G. and Jia, Y. 2010. Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecological Engineering, 36, pp.379-381.10.1016/j.ecoleng.2009.11.003
Yang, E., Fan, L., Yan, J., Jiang, Y., Doucette, C., Fillmore, S. and Walker, B. 2018. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express, 8, pp.10.10.1186/s13568-018-0536-0
Yuan, M., Jiang, C., Weng, X. and Zhang, M. 2020. Influence of salinity gradient changes on phytoplankton growth caused by sluice construction in Yongjiang river estuary area. Water 12(9).10.3390/w12092492
Copyright (c) 2022 Sandi - Permadi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board, based on the author's consent, while the moral rights of the publication belong to the author(s).
2. The formal legal aspect of journal accessibility refers to the same Creative Common Attribution + Noncommercial + ShareAlike (CC BY-NC-SA), implying that publication can be used for non-commercial purposes in its original form.
3. Every publication (printed/electronic) is open access for educational, research and library purposes. In addition to the objectives stated above, the editorial board is not responsible for copyright infringement