The Application of Different Types of Diffusers for African Catfish (Clarias gariepinus) Culture in Biofloc Systems: Effects on Growth and Water Quality
Downloads
Applying biofloc technology in the intensive and extensive culture of Clarias gariepinus can improve water quality and be used to feed fish. Aeration systems were a critical unit supporting biofloc and water quality. This study's objective was assessment to various types of diffusers on the growth and water quality in a C. gariepinus culture. Two types of diffusers unit were prepared for the experiment, there are air tube diffuser (AT) and air stone diffuser (AS). Growth parameters, water quality, and volume of biofloc were observed within 30 days. The survival rate, weight gain, average body weight, and specific growth rate of C. gariepinus were higher in the tanks that used air tubes (98%, 485.29 %, 7.52 g, 5.89%) than in the tanks that used air stones (92 %, 385.94 %, 5.98 g, 5.23%). The volume of biofloc range from 5.40-18.80 ml/L in AT tanks and 4.60-14.00 ml/L in AS tanks. There is no significant difference (p > 0.05) in water quality parameters and FCR value. However, using the air tube diffuser showed better results with the growth performance, survival rate, and formation of biofloc.
Adharani, N., Soewardi, K., Syakti, A. D., & Hariyadi, S. 2016. Manajemen Kualitas Air dengan Teknologi Bioflok: Studi Kasus Pemeliharaan Ikan Lele (Clarias sp.). Jurnal Ilmu Pertanian Indonesia. 21(1): 35-40. DOI: https://doi.org/10.18343/jipi.21.1.35
Affandi, A., & Safia, W. O. (2022). Evaluation of Flock Volume Levels on Water Quality and Production Performance of Catfish (Clarias gariepinus) Cultured Using a Micropore Pipe as an Aeration Diffuser. Journal of Aquaculture & Fish Health, 11(2). https://doi.org/10.20473/jafh.v11i2.25186
AftabUddin, S., Siddique, M. A. M., Sein, A., Dey, P. K., Rashed-Un-Nabi, M., & Haque, M. A. 2020. First use of biofloc technology for Penaeus monodon culture in Bangladesh: Effects of stocking density on growth performance of shrimp, water quality and bacterial growth. Aquaculture Reports, 18, 100518. https://doi.org/10.1016/j.aqrep.2020.100518
APHA, A., 2017. WEF, Standard methods for the examination of water and wastewater. 23rd Revised Edn. American Public Health Association, Washington, DC.
Chaignon, V., Lartiges, B.S., El Samrani, A. and Mustin, C., 2002. Evolution of size distribution and transfer of mineral particles between flocs in activated sludges: an insight into floc exchange dynamics. Water Research, 36(3), pp.676-684. https://doi.org/10.1016/S0043-1354(01)00266-4
Choo, H.X. and Caipang, C.M.A., 2015. Biofloc technology (BFT) and its application towards improved production in freshwater tilapia culture. Aquaculture, Aquarium, Conservation & Legislation, 8(3), pp.362-366.
Crab, R., Chielens, B., Wille, M., Bossier, P. and Verstraete, W., 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41(4), pp.559-567. https://doi.org/10.1111/j.1365-2109.2009.02353.x
Crab, R., Defoirdt, T., Bossier, P. and Verstraete, W., 2012. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356, pp.351-356. https://doi.org/10.1016/j.aquaculture.2012.04.046
Dauda, A. B., Romano, N., Ebrahimi, M., Karim, M., Natrah, I., Kamarudin, M. S., & Ekasari, J. 2017. Different carbon sources affects biofloc volume, water quality and the survival and physiology of African catfish Clarias gariepinus fingerlings reared in an intensive biofloc technology system. Fisheries science, 83(6), 1037-1048. https://doi.org/10.1007/s12562-017-1144-7
Dauda, A.B., 2020. Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Reviews in Aquaculture, 12(2), pp.1193-1210. https://doi.org/10.1111/raq.12379
Ekasari, J. and Maryam, S., 2012. Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. Hayati journal of Biosciences, 19(2), pp.73-80. https://doi.org/10.4308/hjb.19.2.73
Emerenciano, M., Ballester, E.L., Cavalli, R.O. and Wasielesky, W., 2012. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture research, 43(3), pp.447-457. https://doi.org/10.1111/j.1365-2109.2011.02848.x
Hargreaves, J.A., 2006. Photosynthetic suspended-growth systems in aquaculture. Aquacultural engineering, 34(3), pp.344-363. https://doi.org/10.1016/j.aquaeng.2005.08.009
Hargreaves, J.A., 2013. Biofloc production systems for aquaculture (Vol. 4503, pp. 1-11). Stoneville, MS: Southern Regional Aquaculture Center.
Hidayat, K.W., Supriyono, E., Setiyanto, D.D. and Widiyati, A., 2016. Effect of three simple design micro-pore aeration on growth and survival of hybrid catfish Pangasius sp. International Journal of Fisheries and Aquatic Studies, 4(4), pp.170-172.
Irawati, H., Firdaus, M., Jojon, H., Wijayanti, T., & Maulianawati, D. 2020. Asesmen Kualitas Air Sungai Kelurahan Pantai Amal Kecamatan Tarakan Timur Kota Tarakan. Jurnal Harpodon Borneo. 13(2): 61-69. DOI: https://doi.org/10.35334/harpodon.v13i2.1819
Jatobá, A., da Silva, B.C., da Silva, J.S., do Nascimento Vieira, F., Mouriño, J.L.P., Seiffert, W.Q. and Toledo, T.M., 2014. Protein levels for Litopenaeus vannamei in semi-intensive and biofloc systems. Aquaculture, 432, pp.365-371. https://doi.org/10.1016/j.aquaculture.2014.05.005
Khanjani, M.H. and Sharifinia, M., 2020. Biofloc technology as a promising tool to improve aquaculture production. Reviews in aquaculture, 12(3), pp.1836-1850. https://doi.org/10.1111/raq.12412
Khanjani, M.H., Mohammadi, A. and Emerenciano, M.G.C., 2022. Microorganisms in biofloc aquaculture system. Aquaculture Reports, 26, p.101300. https://doi.org/10.1016/j.aqrep.2022.101300
Khanjani, M.H., Sajjadi, M.M., Alizadeh, M. and Sourinejad, I., 2017. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, 48(4), pp.1491-1501. https://doi.org/10.1111/are.12985
Lim, Y.S., Ganesan, P., Varman, M., Hamad, F.A. and Krishnasamy, S., 2021. Effects of microbubble aeration on water quality and growth performance of Litopenaeus vannamei in biofloc system. Aquacultural Engineering, 93, p.102159. https://doi.org/10.1016/j.aquaeng.2021.102159
Martínez"Córdova, L.R., Emerenciano, M., Miranda"Baeza, A. and Martínez"Porchas, M., 2015. Microbial"based systems for aquaculture of fish and shrimp: an updated review. Reviews in Aquaculture, 7(2), pp.131-148. doi.org/10.1111/raq.12058
Maulianawati, D., Purnomo, A.S. and Kamei, I., 2021. Biodegradation of DDT by Co-cultures of Pleurotus eryngii and Pseudomonas aeruginosa. HAYATI Journal of Biosciences, 28(3), pp.240-240. https://doi.org/10.4308/hjb.28.3.240
Maulianawati, D., Rukisah, R., Ramadani, D. and Irawati, H., 2022, September. The Application of Different Probiotics for Prevention of Motile Aeromonas Septicemia Disease on African Catfish (Clarias gariepinus). In IOP Conference Series: Earth and Environmental Science (Vol. 1083, No. 1, p. 012054). IOP Publishing. DOI 10.1088/1755-1315/1083/1/012054
Minaz, M. and Kubilay, A., 2021. Operating parameters affecting biofloc technology: carbon source, carbon/nitrogen ratio, feeding regime, stocking density, salinity, aeration, and microbial community manipulation. Aquaculture International, 29(3), pp.1121-1140. https://doi.org/10.1007/s10499-021-00681-x
Moss, S.M., LeaMaster, B.R. and Sweeney, J.N., 2007. Relative abundance and species composition of gram"negative, aerobic bacteria associated with the gut of juvenile white shrimp Litopenaeus vannamei reared in oligotrophic well water and eutrophic pond water. Journal of the world aquaculture society, 31(2), pp.255-263. https://doi.org/10.1111/j.1749-7345.2000.tb00361.x
Navisa, J., Sravya, T., Swetha, M. and Venkatesan, M., 2014. Effect of bubble size on aeration process. Asian Journal of Scientific Research, 7(4), p.482. DOI: 10.3923/ajsr.2014.482.487
Purnomo, A.S., Maulianawati, D. and Kamei, I., 2019. Ralstonia pickettii enhance the DDT biodegradation by Pleurotus eryngii. https://doi.org/10.4014/jmb.1906.06030
Rejito, A. 2019. Analisis Kadar Nitrit dalam Air Media Pemeliharaan Larva Ikan Kerapu bebek Setelah Proses Aerasi. International Journal of Applied Chemistry Research. 1(2): 40-46. DOI :10.23887/ijacr-undiksha. https://doi.org/10.23887/ijacr.v1i2.28727
Schveitzer, R., Arantes, R., Costódio, P.F.S., do Espírito Santo, C.M., Arana, L.V., Seiffert, W.Q. and Andreatta, E.R., 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, pp.59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006
Sumitro, S., Afandi, A., Hidayat, K.W. and Pratiwi, R., 2020. Evaluasi Beberapa Desain Pipa Mikropori Sebagai Sistem Aerasi Dalam Budidaya Ikan Lele (Clarias gariepinus) Intensif Berbasis Teknologi Bioflok. Journal of Aquaculture and Fish Health, 9(2), pp.114-121. https://doi.org/10.20473/jafh.v9i2.16692
Sumitro, S., Afandi, A., Hidayat, K.W. and Pratiwi, R., 2020. Evaluasi Beberapa Desain Pipa Mikropori Sebagai Sistem Aerasi Dalam Budidaya Ikan Lele (Clarias gariepinus) Intensif Berbasis Teknologi Bioflok. Journal of Aquaculture and Fish Health, 9(2), pp.114-121. DOI:10.20473/jafh.v9i2.16692
Van Tung, T., Thao, N.T.P., Hieu, T.T., Le Thanh, S., Braunegg, S., Braunegg, G. and Schnitzer, H., 2021. Waste treatment and soil cultivation in a zero emission integrated system for catfish farming in Mekong delta, Vietnam. Journal of cleaner production, 288, p.125553. doi.org/10.1016/j.jclepro.2020.125553
Xu, W.J. and Pan, L.Q., 2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356, pp.147-152. https://doi.org/10.1016/j.aquaculture.2012.05.022
Copyright (c) 2024 Diana Maulianawati, Hendri Kiing, Dena Pramita Dewi, Heni Irawati, Muhammad Amien
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board, based on the author's consent, while the moral rights of the publication belong to the author(s).
2. The formal legal aspect of journal accessibility refers to the same Creative Common Attribution + Noncommercial + ShareAlike (CC BY-NC-SA), implying that publication can be used for non-commercial purposes in its original form.
3. Every publication (printed/electronic) is open access for educational, research and library purposes. In addition to the objectives stated above, the editorial board is not responsible for copyright infringement