In Silico Study of Betaine, Isoleucine, and DL-Stachydrine Compounds in Shipworm (Spathoteredo obtusa) Extract as an Antibacterial Agent of Aeromonas hydrophila
Downloads
The rapid increase in freshwater commodity production is accompanied by various obstacles that pose challenges for farmers, namely, disease infections. Bacterial infection by Aeromonas hydrophila is the pathogenic agent causing Motile Aeromonas Septicemia (MAS), which can result in 100% mortality within a short period. The AhlC toxin protein in A. hydrophila bacteria plays the most critical role in the Ahl tripartite toxin, as AhIC acts as a protomer and inserts itself into one membrane layer, then binds to AhlB and AhlA to form pores in both membrane layers. Active compounds found in marine mussel extracts (Spathoteredo obtusa), particularly betaine, isoleucine, and DL-stachydrine, have the potential to inhibit the AhlC toxin protein produced by A. hydrophila bacteria. This study aims to predict the interaction between the AhlC receptor protein in A. hydrophila bacteria and the active compounds identified from the extract of shipworms (S. obtusa) using molecular docking methods. The test results showed that all three compounds met all ADME predictions, with the best binding affinity value of -4.2 kcal/mol for isoleucine and DL-stachydrine, followed by -3.5 kcal/mol for betaine. Based on the test results, there are appropriate, stable, and effective hydrogen and electrostatic charge interactions with the ligand-receptor complex (ASN:32, GLN:35, ARG:112, and ASP:116), which play a crucial role as active sites in ligand binding to the receptor.
Abouzeid, S., Beutling, U., Elekhnawy, E. and Selmar, D. 2023. Antibacterial and antibiofilm effects of allelopathic compounds identified in Medicago sativa L. Seedling exudate against Escherichia coli. Molecules, 28(6), 2645. https://doi.org/10.3390/molecules28062645
Affandi, R.I. and Setyono, B.D.H., 2025. Potential of Octopus Ink Extract as Anti-Quorum Sensing to Prevent Aeromonas hydrophila Biofilm in Aquaculture. Jurnal Biologi Tropis, 25(1), pp.459-470. https://doi.org/10.29303/jbt.v25i1.8438
Ammar, A.M., El-Galil, S.Y.A., Mohamed, B.E. and Gharib, A.A.E., 2023. Motile aeromonads as a nile tilapia bacterial infection: a review on prevalence, molecular characterization, effect on immune response and alternatives control measures. Zagazig Veterinary Journal, 51(2), pp.112-128. https://doi.org/10.21608/zvjz.2023.181478.1199
Birnie, C.R., Malamud, D. and Schnaare, R.L., 2000. Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N, N-dimethylamine oxides with variations in chain length. Antimicrobial agents and chemotherapy, 44(9), pp.2514-2517. https://doi.org/10.1128/aac.44.9.2514-2517.2000
Borges, L.M.S., Pfeifer, B., Pandur, S., Toubarro, D., Tanase, A.M., Chiciudean, I., Menzel, M.M., Hoppert, M., Daniel, R., Simoes, N. and Altermark, B., 2021. A picture is worth a thousand words: novel photographic evidence on the anatomy of the digestive system of three shipworm species (Bivalvia, Teredinidae). Zoomorphology, 140, pp.469–485. https://doi.org/10.1007/s00435-021-00540-6
Desiraju, G.R. and Steiner, T., 2001. The weak hydrogen bond: in structural chemistry and biology (Vol. 9). Oxford University Press, Oxford.
Ghahremanian, S., Rashidi, M.M., Raeisi, K. and Toghraie, D., 2022. Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review. Journal of Molecular Liquids, 354, 118901. https://doi.org/10.1016/j.molliq.2022.118901
Haritha, M., Sreerag, M. and Suresh, C.H., 2024. Quantifying the hydrogen-bond propensity of drugs and its relationship with Lipinski’s rule of five. New Journal of Chemistry, 48(11), pp.4896-4908. https://doi.org/10.1039/D3NJ05476D
Hasna, S.K., Sarjito, Haditomo, A.H.C., Nurhayati, D., Desrina and Prayitno, S.B., 2024. Efek Perendaman dalam Ekstrak Lidah Buaya (Aloe vera) terhadap Infeksi Aeromonas hydrophila, Profil Darah, Pertumbuhan, dan Kelangsungan Hidup Ikan Mas (Cyprinus carpio). Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, 20(2), pp.74-84. https://doi.org/10.14710/ijfst.20.2.74-84
Hendy, I.W., Shipway, J.R., Tupper, M., Etxabe, A.G., Ward, R.D. and Cragg, S.M., 2022. Biodegraders of large woody debris across a tidal gradient in an Indonesian mangrove ecosystem. Frontiers in Forests and Global Change, 5, 852217. https://doi.org/10.3389/ffgc.2022.852217
Herrera, A., Kim, Y., Chen, J., Jedrzejczak, R., Shukla, S., Maltseva, N., Joachimiak, G., Welk, L., Wiersum, G., Jaroszewski, L., Godzik, A., Joachimiak, A., and Satchell, K.J.F., 2022. A genomic island of Vibrio cholerae encodes a three-component cytotoxin with monomer and protomer forms structurally similar to alpha-pore-forming toxins. Journal of Bacteriology, 204, e00555-21. https://doi.org/10.1128/jb.00555-21
Hu, W.N., Jiao, W.J., Ma, Z., Dong, N., Ma, Q.Q., Shao, C.X. and Shan, A.S., 2013. The influence of isoleucine and arginine on biological activity and peptide-membrane interactions of antimicrobial peptides from the bactericidal domain of AvBD4. Protein & Peptide Letters, 20(11), pp.1189-1199. https://doi.org/10.2174/09298665113209990042
Iqbal, S. and Matsabisa, M., 2024. In silico investigation of cannabinoids from Cannabis sativa leaves as a potential anticancer drug to inhibit MAPK-ERK signaling pathway and EMT induction. In Silico Pharmacology, 12, 41. https://doi.org/10.1007/s40203-024-00213-4
Klijnstra, M.D., Faassen, E.J. and Gerssen, A., 2021. A generic LC-HRMS screening method for marine and freshwater phycotoxins in fish, shellfish, water, and supplements. Toxins, 13(11), 823. https://doi.org/10.3390/toxins13110823
Lailiyyah, H. and Lisdiana, L., 2023. Antibacterial Activity of temu kunci (Boesenbergia rotunda) Active Compounds to Mycobacterium tuberculosis in silico. LenteraBio: Berkala Ilmiah Biologi, 12(2), pp.132-149. https://doi.org/10.26740/lenterabio.v12n2.p132-149
Malaisamy, A.K., Balasubramanian, B., Tamilselvan, P.Y., Sakthivel, V., Venkatachalapathi, S. and Bhotla, H.K., 2024. Probing marine macroalgal phlorotannins as an antibacterial candidate against Salmonella typhi: Molecular docking and dynamics simulation approach. Current Plant Biology, 40, 100418. https://doi.org/10.1016/j.cpb.2024.100418
Meng, X.Y., Zhang, H.X., Mezei, M. and Cui, M., 2011. Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), pp.146-157. https://doi.org/10.2174/157340911795677602
Najih, Y.A., Izazi, F., Siswandono and Putri, B.A., 2023. Studi In Silico Pembentukan Kokristal Meloxicam dengan Berbagai Koformor Perbandingan (1:1). Jurnal Ilmiah Ibnu Sina, 8(1), pp.31-38. https://doi.org/10.36387/jiis.v8i1.1086
Nhinh, D.T., Le, D.V., Van, K.V., Giang, N.T.H., Dang, L.T. and Hoai, T.D., 2021. Prevalence, virulence gene distribution and alarming the multidrug resistance of Aeromonas hydrophila associated with disease outbreaks in freshwater aquaculture. Antibiotics, 10(5), pp.532-548. https://doi.org/10.3390/antibiotics10050532
Nurlailiyah, F.A., Putri, N.P.A.K.F., A’yun, S.S.Q., Cahyani, S.N., Larasati, A.M., Hose, V.A.G. and Fatchiyah, 2023. Inhibition of Antibacterial Bioactive Compounds from Awar-Awar (Ficus septica Burm, F.) Leaves for Methicillin Resistant Staphylococcus aureus (MRSA) Infection: an In Silico Study. JSMARTech: Journal of Smart Bioprospecting and Technology, 4(1), pp.32-37. https://doi.org/10.21776/ub.jsmartech.2023.004.01.32
Okeke, E.S., Chukwudozie, K.I., Nyaruaba, R., Ita, R.E., Oladipo, A., Ejeromedoghene, O., Atakpa, E.O., Agu, C.V. and Okoye, C.O., 2022. Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environmental Science and Pollution Research, 29(46), pp.69241-69274. https://doi.org/10.1007/s11356-022-22319-y
Pereira, C., Duarte, J., Costa, P., Braz, M. and Almeida, A., 2022. Bacteriophages in the control of Aeromonas sp. In aquaculture systems: An integrative view. Antibiotics, 11(2), 163. https://doi.org/10.3390/antibiotics11020163
Rachmah, D.L. and Nurhayati, A.P.D., 2024. Potential of Oyster Mushroom (Pleurotus ostreatus) secondary metabolites on KRAS protein in-silico liver cancer. International Journal of Science and Research Archive, 12(2), pp.1452-1459. https://doi.org/10.30574/ijsra.2024.12.2.1389
Ramona, Y., Darmayasa, I.B.G., Widiantari, N.P., Shanti, N.N.B.D., Hani, N.L., Julyantoro, P.G.S., Oktariani, A.F. and Shetty, K., 2024. Catecholamines (DOPAMINE) Increases the Virulence of Aeromonas hydrophila ATCC AH-1N, the Causative Agent of Motile Aeromonas Septicemia (MAS). Microbiology and Biotechnology Letters, 52(2), pp.179-188. https://doi.org/10.48022/mbl.2402.02003
Semwal, A., Kumar, A. and Kumar, N. 2023. A Review on Pathogenicity of Aeromonas hydrophila and Their Mitigation Through Medicinal Herbs in Aquaculture. Heliyon, 9(3), e14088. https://doi.org/10.1016/j.heliyon.2023.e14088
Statistics Indonesia, 2025. Produksi Perikanan Budidaya Menurut Komoditas Utama (Ton), 2020-2023. Jakarta. https://www.bps.go.id/id/statistics-table/2/MTUxMyMy/produksi-perikanan-budidaya-menurut-komoditas-utama.html
Tarko, L. 2011. Using the bond order calculated by quantum mechanics to identify the rotatable bonds. Revista de Chimie, 62(2), pp.135-138. https://doi.org/10.37358/Rev.Chim.1949
Wairara, S., Sajriawati, Amir, A., Situmorang, F.C., Ginting, N.M. and Dawapa, M., 2020. Effect of Tambelo (Bactronophorus thoracites) Extract for Body Weight on Male Mice (Mus muscullus) During Physical Activity. In International Joint Conference on Science and Technology, 1(1), pp.12-17. https://journal.trunojoyo.ac.id/ijcst/article/viewFile/8267/4777
Wilson, J.S., Churchill-Angus, A.M., Davies, S.P., Sedelnikova, S.E., Tsokov, S.B., Rafferty, J.B., Bullough, P.A., Bisson, C. and Baker, P.J., 2019. Identification and Structural Analysis of the Tripartite α-Pore Forming Toxin of Aeromonas hydrophila. Nature Communications, 10, 2900. https://doi.org/10.1038/s41467-019-10777-x
Wiralis, Fathurrahman, T., Hariani and Suwarni, 2024. Tombelu Extract (Bactronophorus sp.) Inhibits Plasmodium falciparum Metabolism In Vitro. Atlantis Press: In 1st International Conference Medical and Health Science Halu Oleo, 76(1), pp.153-163. https://doi.org/10.2991/978-94-6463-392-4_18
Copyright (c) 2025 Journal of Aquaculture and Fish Health

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board, based on the author's consent, while the moral rights of the publication belong to the author(s).
2. The formal legal aspect of journal accessibility refers to the same Creative Common Attribution + Noncommercial + ShareAlike (CC BY-NC-SA), implying that publication can be used for non-commercial purposes in its original form.
3. Every publication (printed/electronic) is open access for educational, research and library purposes. In addition to the objectives stated above, the editorial board is not responsible for copyright infringement