Pengelompokan Wilayah Madura Berdasar Indikator Pemerataan Pendidikan Menggunakan Partition Around Medoids Dan Validasi Adjusted Random Index
Downloads
Abstrak” Pemerataan pendidikan di Indonesia telah menjadi perhatian pemerintah sejak lama. Namun hingga saat ini, pendidikan di Indonesia masih belum merata. Hal tersebut dapat dilihat dari rendahnya nilai Angka Partisisipasi Kasar (APK) dan Angka Partisipasi Murni (APM) di daerah-daerah tertentu serta belum meratanya sarana dan prasarana pendidikan. Adapun tujuan penelitian ini adalah memberikan informasi kepada pemerintah setempat mengenai kondisi pendidikan di wilayahnya sehingga dapat menghasilkan kebijakan yang tepat mengenai pengembangan infrastuktur pendidikan dan distribusi guru bantu. Clustering adalah metode data mining yang membagi data kedalam kelompok yang mempunyai objek yang karakteristik sama. Penelitian ini menggunakan metode clustering Partition Around Medoids (PAM) dengan 3 distance measure: Manhattan, Euclidean dan Canberra distance. Untuk mengukur kualitas hasil clustering, digunakan nilai Adjusted Rand Index (ARI). Semakin besar nilai ARI, semakin baik kualitas cluster. Dari 3 kali ujicoba diperoleh rata-rata nilai ARI untuk Euclidean distance sebesar 0.799, Manhattan distance dengan rata-rata sebesar 0.738 dan Canberra distance sebesar 0.163. Sedangkan pengelompokan terbaik diperoleh menggunakan Euclidean distance dengan nilai ARI sebesar 0.825 dan kecocokan dengan label asli sebesar 83.33%. Dari pengelompokan terbaik menghasilkan kelompok pemerataan tinggi terdiri dari 11 kecamatan, kelompok pemerataan sedang terdiri dari 15 kecamatan dan kelompok pemerataan rendah terdiri dari 46 kecamatan.
Kata Kunci” indikator pemerataan pendidikan, clustering, Partition Around Medoid, distance measure, Adjusted Random Index
Abstract”Distribution of education in Indonesia has become government's attention for a long time. But until now, education in Indonesia is still not evenly distributed. This can be seen from the low value of Participation Rough figures and net enrollment ratio in certain areas as well as uneven educational facilities. The purpose of this research is to provide information to local authorities about the state of education in local region to produce an appropriate policy regarding development of educational infrastructure and teachers assistant distribution. Clustering is a data mining method that divides data into several groups with the same object characteristics. This research used Partition Around Medoids methods with 3 distance measure that contain Manhattan, Euclidean and Canberra distance. Adjusted Random Index used to measure the quality of clustering results. From 3 times sampling, better value of ARI Euclidean distance 0.799, Manhattan distance 0.738 and Canberra distance 0.163 while the best clustering obtained is Euclidean distance with value of ARI 0.825 and compatibility with the original label 83.33%. it is produces high equity group composed of 11 districts with equity groups are composed of 15 districts and low equity group consists of 46 sub-districts.
Keywords”Indicator of Educational Equity, Clustering, Partition Around Medoid, Distance Measure, Adjusted Random Index .
de Vargas, R. R., & Bedregal, B. R. C. (2013, 15-17 Oct. 2013). A Way to Obtain the Quality of a Partition by Adjusted Rand Index. Paper presented at 2nd Workshop-School on the Theoretical Computer Science (WEIT).
Di, Jia, Jin-feng, Fang, Xue-ping, He, Lu, Meng, & Yi-fei, Zhang. (2013, 23-25 July 2013). A method of color image edge extraction based on Manhattan distance map. Paper presented at Ninth International Conference on the Natural Computation (ICNC).
Galinium, M., Defindal, I. P., & Melissa, I. (2012, May 30 2012-June 1 2012). E-learning system introduction: equality in education for teachers in rural area of Indonesia. Paper presented at International Joint Conference on the Computer Science and Software Engineering (JCSSE).
Han, Jian-yu, Ding, Jie-chao, & Wang, Jun. (2010, 24-26 Dec. 2010). Income Gap of Residents, Peasant Income and Economic Growth: An Empirical Study of Rural China Data. Paper presented at 2010 International Symposium on the Information Science and Engineering (ISISE).
Julazadeh, A., Marsousi, M., & Alirezaie, J. (2012, 27-30 Nov. 2012). Classification based on sparse representation and Euclidian distance. Paper presented at IEEE the Visual Communications and Image Processing (VCIP).
Mishra, Deepti, & Hiranwal, Saroj. (2014, 1-2 Aug. 2014). Analysis & implementation of item based collaboration filtering using K-Medoid. Paper presented at 2014 International Conference on the Advances in Engineering and Technology Research (ICAETR).
Santos, J. M., & Ramos, S. (2010, Nov. 29 2010-Dec. 1 2010). Using a clustering similarity measure for feature selection in high dimensional data sets. Paper presented at the Intelligent Systems Design and Applications (ISDA), 2010 10th International Conference on.
Shaohong, Zhang, & Hau-San, Wong. (2010, 23-26 Aug. 2010). ARImp: A Generalized Adjusted Rand Index for Cluster Ensembles. Paper presented at 20th International Conference on the Pattern Recognition (ICPR).
Sheng-Yi, Jiang. (2006, 13-16 Aug. 2006). Efficient Classification Method for Large Dataset. Paper presented at International Conference on the Machine Learning and Cybernetics.
Xing, Hui, Zhang, Litao, Wang, Yajie, & Zhang, Yanli. (2009, 11-13 Dec. 2009). Higher Education Equity And Income Distribution: Theory Survey. Paper presented at International Conference on the Computational Intelligence and Software Engineering CiSE 2009.
Ying-ting, Zhu, Fu-zhang, Wang, Xing-hua, Shan, & Xiao-yan, Lv. (2014, 22-24 Aug. 2014). K-medoids clustering based on MapReduce and optimal search of medoids. Paper presented at 9th International Conference on the Computer Science & Education (ICCSE).
Yu-Jie, Hao, Cao, Yang, Shuang-Yan, Quan, & Jian-Ping, Li. (2008, 13-15 Dec. 2008). Distance Measure between Vague Sets. Paper presented at International Conference on the Apperceiving Computing and Intelligence Analysis (ICACIA).
Authors who publish with this journal agree to the following terms:
All accepted papers will be published under a Creative Commons Attribution 4.0 International (CC BY 4.0) License. Authors retain copyright and grant the journal right of first publication. CC-BY Licenced means lets others to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially).