Predicting Velocity and Direction of Ocean Surface Currents using Elman Recurrent Neural Network Method
Downloads
Background: Ocean surface currents need to be monitored to minimize accidents at ship crossings. One way to predict ocean currents”and estimate the danger level of the sea”is by finding out the currents' velocity and their future direction.
Objective: This study aims to predict the velocity and direction of ocean surface currents.
Methods: This research uses the Elman recurrent neural network (ERNN). This study used 3,750 long-term data and 72 short-term data.
Results: The evaluation with Mean Absolute Percentage Error (MAPE) achieved the best results in short-term predictions. The best MAPE of the U currents (east to west) was 14.0279% with five inputs; the first and second hidden layers were 50 and 100, and the learning rate was 0.3. While the best MAPE of the V currents (north to south) was 3.1253% with five inputs, the first and second hidden layers were 20 and 50, and the learning rate was 0.1. The ocean surface currents' prediction indicates that the current state is from east to south with a magnitude of around 169,5773°-175,7127° resulting in a MAPE of 0.0668%.
Conclusion: ERNN is more effective than single exponential smoothing and RBFNN in ocean current prediction studies because it produces a smaller error value. In addition, the ERNN method is good for short-term ocean surface currents but is not optimal for long-term current predictions.
Keywords: MAPE, ERNN, ocean currents, ocean currents' velocity, ocean currents' directions
B. M. Sukojo and L. Zahroh, "Analisis perubahan daerah potensi ikan menggunakan citra satelit modis level 1b (studi kasus: selat bali),” Geoid, vol. 13, no. 1, pp. 55–62, 2018.
J. Sprintall, A. L. Gordon, R. Murtugudde, and R. D. Susanto, "A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997,” Journal of Geophysical Research: Oceans, vol. 105, no. C7, pp. 17217–17230, 2000.
K. K. Sandeep, V. Pant, M. S. Girishkumar, and A. D. Rao, "Impact of riverine freshwater forcing on the sea surface salinity simulations in the Indian Ocean,” Journal of Marine Systems, vol. 185, pp. 40–58, 2018.
A. B. Sambah, A. Wijaya, N. Hidayati, and F. Iranawati, "Sensitivity and Dynamic of Sardinella Lemuru in Bali Strait Indonesia,” Journal of Hunan University Natural Sciences, vol. 48, no. 1, 2021.
K. Orhan, R. Mayerle, R. Narayanan, and W. Pandoe, "Investigation of the energy potential from tidal stream currents in Indonesia,” Coastal Engineering Proceedings, vol. 1, no. 35, p. 10, 2016.
K. Narula, "Renewable energy from oceans,” in The Maritime Dimension of Sustainable Energy Security, Springer, 2019, pp. 163–186.
L. B. Sugito, "Studi Arus Laut pada Selat Alas untuk Pemetaan Potensi Pembangkit Listrik Tenaga Arus Laut.” Institut Teknologi Sepuluh Nopember, 2017.
A. Amiruddin, A. Ribal, K. Khaeruddin, and A. K. Amir, "Preliminary Estimation of Tidal Current Energy for Three Straits in the Vicinity of Bali and Lombok Islands,” International Journal of Renewable Energy Research (IJRER), vol. 9, no. 4, pp. 1638–1649, 2019.
A. B. Sambah, T. D. Oktavia, D. W. Kusuma, F. Iranawati, N. Hidayati, and A. Wijaya, "Oceanographic variability and its influence on pelagic fish catch in the Bali Strait,” Berkala Penelitian Hayati, vol. 26, no. 1, pp. 8–16, 2020.
D. D. Kartika, D. C. R. Novitasari, and F. Setiawan, "Prediksi Kecepatan Arus Laut di Perairan Selat Bali Menggunakan Metode Exponential Smoothing Holt-Winters,” MathVisioN, vol. 2, no. 1, pp. 12–17, 2020.
W. W. Rwanda, "Prediksi Kecepatan Arus Laut Perairan Pulau Bintan Menggunakan Radial Basis Function Neural Network (RBFNN),” Prediksi Kecepatan Arus Laut Perairan Pulau Bintan Menggunakan Radial Basis Function Neural Network (RBFNN), pp. 1–6, 2018.
N. R. E. Kurniawan and N. Nikentari, "implementasi Algoritma Neural Network Backpropagain untuk Memprediksi Kecepatan Arus Laut,” Univ. Marit. Raja Ali Haji, pp. 1–10, 2015.
M. Fachrie and A. Harjoko, "Robust Indonesian digit speech recognition using Elman recurrent neural network,” Konferensi Nasional Informatika (KNIF), vol. 2015, pp. 49–54, 2015.
R. Ramadevi, B. Sheela Rani, and V. Prakash, "Role of hidden neurons in an elman recurrent neural network in classification of cavitation signals,” Int J Comput Appl, vol. 37, no. 7, pp. 9–13, 2012.
J. Wang, D. C. Samuels, S. Zhao, Y. Xiang, Y.-Y. Zhao, and Y. Guo, "Current research on non-coding ribonucleic acid (RNA),” Genes, vol. 8, no. 12, p. 366, 2017.
B. Ullah, M. Ovinis, M. B. Baharom, S. S. A. Ali, B. Khan, and M. Y. Javaid, "Effect of waves and current on motion control of underwater gliders,” Journal of Marine Science and Technology, vol. 25, no. 2, pp. 549–562, 2020.
R. Cao, H. Chen, Z. Rong, and X. Lv, "Impact of ocean waves on transport of underwater spilled oil in the Bohai Sea,” Marine Pollution Bulletin, vol. 171, p. 112702, 2021.
D. Berlianty and T. Yanagi, "Tide and tidal current in the Bali strait, Indonesia,” Marine Research in Indonesia, vol. 36, no. 2, pp. 25–36, 2011.
S. Ozdemir and D. Susarla, Feature Engineering Made Easy: Identify unique features from your dataset in order to build powerful machine learning systems. Packt Publishing Ltd, 2018.
T. Moon, S. Hong, H. Y. Choi, D. H. Jung, S. H. Chang, and J. E. Son, "Interpolation of greenhouse environment data using multilayer perceptron,” Computers and Electronics in Agriculture, vol. 166, p. 105023, 2019.
I. C. Anindya and M. Kantarcioglu, "Adversarial anomaly detection using centroid-based clustering,” in 2018 IEEE International Conference on Information Reuse and Integration (IRI), 2018, pp. 1–8.
T. Zhang, S. Song, S. Li, L. Ma, S. Pan, and L. Han, "Research on Gas concentration prediction models based on LSTM multidimensional time series,” Energies, vol. 12, no. 1, p. 161, 2019.
D. Harlianto, S. Mardiyati, D. Lestari, A. H. Zili, and S. Devila, "Indonesia tuberculosis morbidity rate forecasting using recurrent neural network,” in AIP Conference Proceedings, 2020, vol. 2242, no. 1, p. 30006.
J. Radjabaycolle, "Prediksi Indeks Harga Konsumen (IHK) Kota Ambon Menggunakan Elman Recurrent Neural Network (ERNN),” Tensor: Pure and Applied Mathematics Journal, vol. 1, no. 2, pp. 65–75, 2020.
W. Walid, "Peramalan Penjualan Harga Saham PT Bank Rakyat (Persero) Tbk BBRI Indonesia dengan Menggunakan Recurren Neural Nerwork (RNN),” in PRISMA, Prosiding Seminar Nasional Matematika, 2019, vol. 2, pp. 139–147.
H. Dhahri, "Biogeography-Based Optimization for Weight Optimization in Elman Neural Network Compared with Meta-Heuristics Methods,” BRAIN. Broad Research in Artificial Intelligence and Neuroscience, vol. 11, no. 2, pp. 82–103, 2020.
Y. Wang, L. Wang, F. Yang, W. Di, and Q. Chang, "Advantages of direct input-to-output connections in neural networks: The Elman network for stock index forecasting,” Information Sciences, vol. 547, pp. 1066–1079, 2021.
Z. Tonković, M. Zekić-SuÅ¡ac, and M. Somolanji, "Predicting natural gas consumption by neural networks,” TehniÄki vjesnik, vol. 16, no. 3, pp. 51–61, 2009.
J. Radjabaycolle and R. Pulungan, "Prediksi Penggunaan Bandwidth Menggunakan Elman Recurrent Neural Network,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 10, no. 2, pp. 127–135, 2016.
F. Setiawan, "Pergerakan arus permukaan laut selat bali berdasarkan parameter angin dan cuaca,” Jurnal Riset Kelautan Tropis (Journal of Tropical Marine Research)(J-Tropimar), vol. 1, no. 2, pp. 1–15, 2020.
A. N. Azizah, D. C. R. Novitasari, P. K. Intan, F. Setiawan, and G. I. P. Sari, "Prediction of Salinity Based on Meteorological Data Using the Backpropagation Neural Network Method,” ILMU KELAUTAN: Indonesian Journal of Marine Sciences, vol. 26, no. 3, pp. 207–214.
D. Z. Haq et al., "Long Short-Term Memory Algorithm for Rainfall Prediction Based on El-Nino and IOD Data,” Procedia Computer Science, vol. 179, pp. 829–837, 2021.
I. I. Zulfa, D. C. R. Novitasari, F. Setiawan, A. Fanani, and M. Hafiyusholeh, "Prediction of Sea Surface Current Velocity and Direction Using LSTM,” IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), vol. 11, no. 1.
R. Fukuoka, H. Suzuki, T. Kitajima, A. Kuwahara, and T. Yasuno, "Wind speed prediction model using LSTM and 1D-CNN,” Journal of Signal Processing, vol. 22, no. 4, pp. 207–210, 2018.
U. I. Arfianti, D. C. R. Novitasari, N. Widodo, M. Hafiyusholeh, and W. D. Utami, "Sunspot Number Prediction Using Gated Recurrent Unit (GRU) Algorithm,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 2, pp. 141–152.
Copyright (c) 2022 The Authors. Published by Universitas Airlangga.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
All accepted papers will be published under a Creative Commons Attribution 4.0 International (CC BY 4.0) License. Authors retain copyright and grant the journal right of first publication. CC-BY Licenced means lets others to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially).