Hybrid Deep Learning Models for Multi-classification of Tumour from Brain MRI
Downloads
Background: Brain tumour categorisation can be assisted with computer-aided diagnostic (CAD) for medical applications. Biopsies to classify brain tumours can be costly and time-consuming. Radiologists may also misclassify brain tumour types when handling large amounts of data with multiple classes. In this case, technological advancements and machine learning can help.
Objective: This study proposes hybrid deep learning approaches for classifying brain tumours using convolutional neural networks (CNN) and machine learning (ML) classifiers.
Methods: A new 23-layer CNN architecture is developed for brain deep feature extraction from magnetic resonance imaging (MRI). Random forest (RF) and support vector machine (SVM) classifiers are then used to evaluate the extracted in-depth features from the flattened layer of the CNN model. This study is unique because it employs CNN, CNN-RF, CNN-SVM, and tuned Inception V3 deep learning models on multi-class brain MRI datasets. The proposed hybrid method is run on two publicly available datasets.
Results: Among the four models, the CNN-RF model achieves 96.52% accuracy on the Fig share 3c dataset, while the CNN-SVM model achieves 95.41% accuracy on the large Kaggle 4c dataset with four classes (glioma, meningioma, normal, pituitary).
Conclusion: Experimental outcomes show that the hybrid techniques can significantly enhance the classification performance, especially on multi-class datasets (glioma, meningioma, normal, pituitary). This study also examines the various weight strategies for dealing with overfitting analytics.
Keywords: Brain Tumour, Convolutional Neural Network, Feature Extraction, Multi-Classification, Machine Learning Classifiers
D. N. Louis et al., "The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathologica, vol. 131, no. 6. 2016. doi: 10.1007/s00401-016-1545-1.
C. Rouse, H. Gittleman, Q. T. Ostrom, C. Kruchko, and J. S. Barnholtz-Sloan, "Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010,” Neuro. Oncol., vol. 18, no. 1, 2016, doi: 10.1093/neuonc/nov249.
G. S. Tandel et al., "A review on a deep learning perspective in brain cancer classification,” Cancers, vol. 11, no. 1. 2019. doi: 10.3390/cancers11010111.
J. Liu et al., "Applications of deep learning to MRI Images: A survey,” Big Data Mining and Analytics, vol. 1, no. 1. 2018. doi: 10.26599/BDMA.2018.9020001.
J. Kang, Z. Ullah, and J. Gwak, "Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers,” Sensors, vol. 21, no. 6, 2021, doi: 10.3390/s21062222.
R. Mehrotra, M. A. Ansari, R. Agrawal, and R. S. Anand, "A Transfer Learning approach for AI-based classification of brain tumors,” Mach. Learn. with Appl., vol. 2, 2020, doi: 10.1016/j.mlwa.2020.100003.
S. Pereira, A. Pinto, V. Alves, and C. A. Silva, "Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images,” IEEE Trans. Med. Imaging, vol. 35, no. 5, 2016, doi: 10.1109/TMI.2016.2538465.
K. Popuri, D. Cobzas, A. Murtha, and M. Jägersand, "3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set,” Int. J. Comput. Assist. Radiol. Surg., vol. 7, no. 4, 2012, doi: 10.1007/s11548-011-0649-2.
J. S. Paul, A. J. Plassard, B. A. Landman, and D. Fabbri, "Deep learning for brain tumor classification,” in Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, 2017, vol. 10137. doi: 10.1117/12.2254195.
N. Abiwinanda, M. Hanif, S. T. Hesaputra, A. Handayani, and T. R. Mengko, "Brain tumor classification using convolutional neural network,” in IFMBE Proceedings, 2019, vol. 68, no. 1. doi: 10.1007/978-981-10-9035-6_33.
N. M. Balasooriya and R. D. Nawarathna, "A sophisticated convolutional neural network model for brain tumor classification,” in 2017 IEEE International Conference on Industrial and Information Systems, ICIIS 2017 - Proceedings, 2018, vol. 2018-Janua. doi: 10.1109/ICIINFS.2017.8300364.
D. Jude Hemanth, J. Anitha, A. Naaji, O. Geman, D. E. Popescu, and L. Hoang Son, "A Modified Deep Convolutional Neural Network for Abnormal Brain Image Classification,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2018.2885639.
J. Seetha and S. S. Raja, "Brain tumor classification using Convolutional Neural Networks,” Biomed. Pharmacol. J., vol. 11, no. 3, 2018, doi: 10.13005/bpj/1511.
S. Khawaldeh, U. Pervaiz, A. Rafiq, and R. S. Alkhawaldeh, "Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks,” Appl. Sci., vol. 8, no. 1, 2017, doi: 10.3390/app8010027.
P. Afshar, A. Mohammadi, and K. N. Plataniotis, "Brain Tumor Type Classification via Capsule Networks,” Proc. - Int. Conf. Image Process. ICIP, pp. 3129–3133, 2018, doi: 10.1109/ICIP.2018.8451379.
S. Charfi, R. Lahmyed, and L. Rangarajan, "Impact Factor(JCC): 1.5548-A NOVEL APPROACH FOR BRAIN TUMOR DETECTION USING NEURAL NETWORK,” Citeseer, vol. 2, 2014.
F. Citak-Er, Z. Firat, I. Kovanlikaya, U. Ture, and E. Ozturk-Isik, "Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T,” Comput. Biol. Med., vol. 99, 2018, doi: 10.1016/j.compbiomed.2018.06.009.
X. Yang and Y. Fan, "Feature extraction using convolutional neural networks for multi-atlas based image segmentation,” 2018. doi: 10.1117/12.2293876.
Y. Pan et al., "Brain tumor grading based on Neural Networks and Convolutional Neural Networks,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015, vol. 2015-November. doi: 10.1109/EMBC.2015.7318458.
F. J. Díaz-Pernas, M. Martínez-Zarzuela, D. González-Ortega, and M. Antón-Rodríguez, "A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network,” Healthc., vol. 9, no. 2, 2021, doi: 10.3390/healthcare9020153.
S. Bhuvaji, S., Ankita Kadam, A., Bhumkar, P., Dedge, S., Swati Kanchan. S., & kanchan, "Brain Tumor Classification (MRI),” 2020.
Z. Ullah, M. U. Farooq, S. H. Lee, and D. An, "A hybrid image enhancement based brain MRI images classification technique,” Med. Hypotheses, vol. 143, 2020, doi: 10.1016/j.mehy.2020.109922.
S. Das, O. F. M. R. R. Aranya, and N. N. Labiba, "Brain Tumor Classification Using Convolutional Neural Network,” 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, no. May 2019, pp. 1–6, 2019, doi: 10.1109/ICASERT.2019.8934603.
J. Cheng, "brain tumor dataset. figshare.,” 2017. https://doi.org/10.6084/m9.figshare.1512427.v5 (accessed Jun. 21, 2021).
F. Rotaru, S.-I. Bejinariu, M. Luca, R. Luca, and C. D. Niţă, "Brain Tumor Segmentation Based on Random Forest,” pp. 1–11, 2016, [Online]. Available: http://mss.academiaromana-is.ro/mem_sc_st_2016/9_Rotaru.pdf
H. F. Chen, "In silico log p prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression,” Chem. Biol. Drug Des., vol. 74, no. 2, pp. 142–147, 2009, doi: 10.1111/j.1747-0285.2009.00840.x.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, 2017, doi: 10.1145/3065386.
J. Cheng et al., "Erratum: Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition (PLoS ONE 10:12 (e0144479)),” PLoS ONE, vol. 10, no. 12. 2015. doi: 10.1371/journal.pone.0144479.
A. Pashaei, H. Sajedi, and N. Jazayeri, "Brain tumor classification via convolutional neural network and extreme learning machines,” 2018 8th Int. Conf. Comput. Knowl. Eng. ICCKE 2018, no. Iccke, pp. 314–319, 2018, doi: 10.1109/ICCKE.2018.8566571.
M. R. Ismael and I. Abdel-Qader, "Brain Tumor Classification via Statistical Features and Back-Propagation Neural Network,” IEEE Int. Conf. Electro Inf. Technol., vol. 2018-May, pp. 252–257, 2018, doi: 10.1109/EIT.2018.8500308.
Copyright (c) 2022 The Authors. Published by Universitas Airlangga.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
All accepted papers will be published under a Creative Commons Attribution 4.0 International (CC BY 4.0) License. Authors retain copyright and grant the journal right of first publication. CC-BY Licenced means lets others to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially).