Comparison of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for Estimating the Susceptible-Exposed-Infected-Recovered (SEIR) Model Parameter Values
Downloads
Background: The most commonly used mathematical model for analyzing disease spread is the Susceptible-Exposed-Infected-Recovered (SEIR) model. Moreover, the dynamics of the SEIR model depend on several factors, such as the parameter values.
Objective: This study aimed to compare two optimization methods, namely genetic algorithm (GA) and particle swarm optimization (PSO), in estimating the SEIR model parameter values, such as the infection, transition, recovery, and death rates.
Methods: GA and PSO algorithms were compared to estimate parameter values of the SEIR model. The fitness value was calculated from the error between the actual data of cumulative positive COVID-19 cases and the numerical data of cases from the solution of the SEIR COVID-19 model. Furthermore, the numerical solution of the COVID-19 model was calculated using the fourth-order Runge-Kutta algorithm (RK-4), while the actual data were obtained from the cumulative dataset of positive COVID-19 cases in the province of Jakarta, Indonesia. Two datasets were then used to compare the success of each algorithm, namely, Dataset 1, representing the initial interval for the spread of COVID-19, and Dataset 2, representing an interval where there was a high increase in COVID-19 cases.
Results: Four parameters were estimated, namely the infection rate, transition rate, recovery rate, and death rate, due to disease. In Dataset 1, the smallest error of GA method, namely 8.9%, occurred when the value of , while the numerical error of PSO was 7.5%. In Dataset 2, the smallest error of GA method, namely 31.21%, occurred when , while the numerical error of PSO was 3.46%.
Conclusion: Based on the parameter estimation results for Datasets 1 and 2, PSO had better fitting results than GA. This showed PSO was more robust to the provided datasets and could better adapt to the trends of the COVID-19 epidemic.
Keywords: Genetic algorithm, Particle swarm optimization, SEIR model, COVID-19, Parameter estimation.
F. A. Muqtadiroh et al., "Fuzzy Unsupervised Approaches to Analyze Covid-19 Spread for School Reopening Decision Making,” IECON Proc. (Industrial Electron. Conf., vol. 2021-Octob, pp. 1–7, 2021, doi: 10.1109/IECON48115.2021.9589699.
A. A. Suwantika, I. Dhamanti, Y. Suharto, F. D. Purba, and R. Abdulah, "The cost-effectiveness of social distancing measures for mitigating the COVID-19 pandemic in a highly-populated country : A case study in Indonesia,” Travel Med. Infect. Dis., vol. 45, no. December 2021, p. 102245, 2022, doi: 10.1016/j.tmaid.2021.102245.
H. Amir, S. Sudarman, A. Asfar, and A. S. Batara, "Covid19 Pandemic: Management and Global Response,” J. Kesehat. Lingkung., vol. 12, no. 1si, p. 121, 2020, doi: 10.20473/jkl.v12i1si.2020.121-128.
D. Aldila, M. Z. Ndii, N. Anggriani, H. Tasman, and B. D. Handari, "Impact of social awareness , case detection , and hospital capacity on dengue eradication in Jakarta : A mathematical model approach q,” Alexandria Eng. J., vol. 64, pp. 691–707, 2023, doi: 10.1016/j.aej.2022.11.032.
X. Li, L. Cai, M. Murshed, and J. Wang, "Dynamical analysis of an age-structured dengue model with asymptomatic infection,” J. Math. Anal. Appl., vol. 524, no. 2, p. 127127, 2023, doi: 10.1016/j.jmaa.2023.127127.
A. Sa'adah, D. A. Kamil, and G. E. Setyowisnu, "Modeling the viral dynamics of SARS-CoV-2 infection on tumor-immune system treated by chemotherapy,” in AIP Conference Proceedings, 2022, p. 020004. doi: 10.1063/5.0091002.
M. Ghani, I. Qutsiati, U. Fadillah, W. Triyayuda, and M. Afifah, "A fractional SEIQR model on diphtheria disease,” Model. Earth Syst. Environ., vol. 9, no. 2, pp. 2199–2219, 2023, doi: 10.1007/s40808-022-01615-z.
K. Das, B. S. N. Murthy, S. A. Samad, and M. H. A. Biswas, "Mathematical transmission analysis of SEIR tuberculosis disease model,” Sensors Int., vol. 2, no. April, p. 100120, 2021, doi: 10.1016/j.sintl.2021.100120.
M. A. Abdoon, R. Saadeh, M. Berir, F. EL Guma, and M. ali, "Analysis, modeling and simulation of a fractional-order influenza model,” Alexandria Eng. J., vol. 74, pp. 231–240, 2023, doi: 10.1016/j.aej.2023.05.011.
P. Yarsky, "Using a genetic algorithm to fit parameters of a COVID-19 SEIR model for US states,” Math. Comput. Simul., vol. 185, pp. 687–695, Jul. 2021, doi: 10.1016/j.matcom.2021.01.022.
Z. Qiu et al., "Application of genetic algorithm combined with improved SEIR model in predicting the epidemic trend of COVID-19, China,” Sci. Rep., vol. 12, no. 1, pp. 1–9, 2022, doi: 10.1038/s41598-022-12958-z.
D. Akman, O. Akman, and E. Schaefer, "Parameter Estimation in Ordinary Differential Equations Modeling via Particle Swarm Optimization,” J. Appl. Math., vol. 2018, 2018, doi: 10.1155/2018/9160793.
A. Eka, W. Widianto, K. A. Ms, and V. R. Tjahjono, "Penentuan Effective Reproduction Number COVID-19 dengan Metode Particle Swarm Optimization pada Enam Provinsi di Pulau Jawa,” J. Math. its Apl., vol. 20, no. 2, pp. 131–143, 2023, doi: 10.12962/limits.v20i2.8585.
D. Rahmalia, T. Herlambang, and T. E. Saputro, "Fertilizer Production Planning Optimization Using Particle Swarm Optimization-Genetic Algorithm,” J. Inf. Syst. Eng. Bus. Intell., vol. 5, no. 2, p. 120, Oct. 2019, doi: 10.20473/jisebi.5.2.120-130.
I. Fadah, A. Elliyana, Y. A. Auliya, Y. Baihaqi, M. Haidar, and D. M. Sefira, "A Hybrid Genetic-Variable Neighborhood Algorithm for Optimization of Rice Seed Distribution Cost,” Math. Model. Eng. Probl., vol. 9, no. 1, pp. 36–42, Feb. 2022, doi: 10.18280/mmep.090105.
D. Herawatie, E. Wuryanto, and F. Jie, "Course scheduling using Modified Genetic Algorithm in vocational education,” Int. J. Oper. Quant. Manag., vol. 24, no. 3, pp. 203–210, 2018.
E. A. D. Kurniawan, F. Fatmawati, and A. Dianpermatasari, "Model Matematika SEAR dengan Memperhatikan Faktor Migrasi Terinfeksi untuk Kasus COVID-19 di Indonesia,” Limits J. Math. Its Appl., vol. 18, no. 2, p. 142, Nov. 2021, doi: 10.12962/limits.v18i2.7774.
D. Okuonghae and A. Omame, "Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria,” Chaos, Solitons & Fractals, vol. 139, p. 110032, Oct. 2020, doi: 10.1016/j.chaos.2020.110032.
B. Ma, J. Qi, Y. Wu, P. Wang, D. Li, and S. Liu, "Parameter estimation of the COVID-19 transmission model using an improved quantum-behaved particle swarm optimization algorithm,” Digit. Signal Process. A Rev. J., vol. 127, 2022, doi: 10.1016/j.dsp.2022.103577.
S. He, Y. Peng, and K. Sun, "SEIR modeling of the COVID-19 and its dynamics,” Nonlinear Dyn., vol. 101, no. 3, pp. 1667–1680, 2020, doi: 10.1007/s11071-020-05743-y.
Windarto, Eridani, and U. D. Purwati, "A comparison of continuous genetic algorithm and particle swarm optimization in parameter estimation of Gompertz growth model,” AIP Conf. Proc., vol. 2084, 2019, doi: 10.1063/1.5094281.
T. A. Prasetyo, R. Saragih, and D. Handayani, "Genetic algorithm to optimization mobility-based dengue mathematical model,” Int. J. Electr. Comput. Eng., vol. 13, no. 4, pp. 4535–4546, 2023, doi: 10.11591/ijece.v13i4.pp4535-4546.
J. M. Carcione, J. E. Santos, C. Bagaini, and J. Ba, "A Simulation of a COVID-19 Epidemic Based on a Deterministic SEIR Model,” Front. Public Heal., vol. 8, no. May, 2020, doi: 10.3389/fpubh.2020.00230.
M. Ghani, I. Qutsiati, U. Fadillah, W. Triyayuda, and M. Afifah, "A fractional SEIQR model on diphtheria diseasee,” Model. Earth Syst. Environ., vol. 9, no. 2, pp. 2199–2219, 2023, doi: 10.1007/s40808-022-01615-z.
K. Das, B. S. N. Murthy, S. A. Samad, and M. H. A. Biswas, "Mathematical transmission analysis of SEIR tuberculosis disease model,” Sensors Int., vol. 2, no. July, p. 100120, 2021, doi: 10.1016/j.sintl.2021.100120.
N. Nuraini, K. K. Sukandar, P. Hadisoemarto, H. Susanto, A. I. Hasan, and N. Sumarti, "Mathematical models for assessing vaccination scenarios in several provinces in Indonesia,” Infect. Dis. Model., vol. 6, pp. 1236–1258, 2021, doi: 10.1016/j.idm.2021.09.002.
A. I. Abdel Karim, "The stability of the fourth order Runge-Kutta method for the solution of systems of differential equations,” Commun. ACM, vol. 9, no. 2, pp. 113–116, 1966, doi: 10.1145/365170.365213.
R. L. Haupt and S. E. Haupt, Practical genetic algorithms. John Wiley & Sons, 2004. doi: 10.1002/0471671746.
Windarto, S. W. Indratno, N. Nuraini, and E. Soewono, "A comparison of binary and continuous genetic algorithm in parameter estimation of a logistic growth model,” in AIP conference proceedings, 2014, pp. 139–142. doi: https://doi.org/10.1063/1.4866550.
V. A. Navarro Valencia, Y. Díaz, J. M. Pascale, M. F. Boni, and J. E. Sanchez-Galan, "Using compartmental models and Particle Swarm Optimization to assess Dengue basic reproduction number R0 for the Republic of Panama in the 1999-2022 period,” Heliyon, vol. 9, no. 4, p. e15424, 2023, doi: 10.1016/j.heliyon.2023.e15424.
H. Gupta and O. P. Verma, "A novel hybrid Coyote–Particle Swarm Optimization Algorithm for three-dimensional constrained trajectory planning of Unmanned Aerial Vehicle,” Appl. Soft Comput., vol. 147, p. 110776, 2023, doi: 10.1016/j.asoc.2023.110776.
M. Jiang et al., "Analysis on the Development Trend of COVID-19 Outbreak in Beijing Based on the Cluster Analysis and SEIR Model,” in 2020 Chinese Automation Congress (CAC), Shanghai, China, 2020. doi: 10.1109/CAC51589.2020.9327560.
T. J. Roy, M. A. Mahmood, A. Mohanta, and D. Roy, "An Analytical Approach to Predict the COVID-19 Death Rate in Bangladesh Utilizing Multiple Regression and SEIR Model,” in 2021 IEEE International Conference on Robotics, Automation, Artificial-Intelligence and Internet-of-Things (RAAICON), Dhaka, Bangladesh, 2021. doi: 10.1109/RAAICON54709.2021.9929470.
W. P. T. M. Wickramaarachchi and S. S. N. Perera, "An SIER model to estimate optimal transmission rate and initial parameters of COVD-19 dynamic in Sri Lanka,” Alexandria Eng. J., vol. 60, no. 1, pp. 1557–1563, 2021, doi: 10.1016/j.aej.2020.11.010.
J. Li et al., "Do Stay at Home Orders and Cloth Face Coverings Control COVID-19 in New York City? Results from a SIER Model Based on Real-world Data,” Open Forum Infect. Dis., vol. 8, no. 2, 2021, doi: 10.1093/ofid/ofaa442.
D. Efimov and R. Ushirobira, "On interval prediction of COVID-19 development in France based on a SEIR epidemic model,” in Proceedings of the IEEE Conference on Decision and Control, 2020, pp. 3883–3888. doi: 10.1109/CDC42340.2020.9303953.
S. Jiang, A. Al-Ataby, and F. Al-Naima, "COVID-19 Cases Estimation in the UK using Improved SEIR Models,” in Proceedings - International Conference on Developments in eSystems Engineering, DeSE, IEEE, 2021, pp. 469–474. doi: 10.1109/DESE54285.2021.9719390.
W. Zhao, Y. Sun, Y. Li, and W. Guan, "Prediction of COVID-19 Data Using Hybrid Modeling Approaches,” Front. Public Heal., vol. 10, no. July, pp. 1–13, 2022, doi: 10.3389/fpubh.2022.923978.
W. Wu, "Computer intelligent prediction method of COVID- 19 based on improved SEIR model and machine learning,” in 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA), IEEE, 2022, pp. 934–938. doi: 10.1109/ICPECA53709.2022.9719312.
D. N. Vinod and S. R. S. Prabaharan, "COVID-19-The Role of Artificial Intelligence, Machine Learning, and Deep Learning: A Newfangled,” Arch. Comput. Methods Eng., vol. 30, no. 4, pp. 2667–2682, 2023, doi: 10.1007/s11831-023-09882-4.
F. Saleem, A. S. A. M. Al-Ghamdi, M. O. Alassafi, and S. A. Alghamdi, "Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review,” Int. J. Environ. Res. Public Health, vol. 19, no. 9, 2022, doi: 10.3390/ijerph19095099.
D. Siahaan, I. K. Raharjana, and C. Fatichah, "User story extraction from natural language for requirements elicitation: Identify software-related information from online news,” Inf. Softw. Technol., vol. 158, p. 107195, Jun. 2023, doi: 10.1016/j.infsof.2023.107195.
Y. Qian, X. Deng, Q. Ye, B. Ma, and H. Yuan, "On detecting business event from the headlines and leads of massive online news articles,” Inf. Process. Manag., vol. 56, no. 6, p. 102086, 2019, doi: 10.1016/j.ipm.2019.102086.
S. Salsabila, S. M. P. Tyas, Y. Romadhona, and D. Purwitasari, "Aspect-based Sentiment and Correlation-based Emotion Detection on Tweets for Understanding Public Opinion of Covid-19,” J. Inf. Syst. Eng. Bus. Intell., vol. 9, no. 1, pp. 84–94, Apr. 2023, doi: 10.20473/jisebi.9.1.84-94.
F. Allahi, A. Fateh, R. Revetria, and R. Cianci, "The COVID-19 epidemic and evaluating the corresponding responses to crisis management in refugees: a system dynamic approach,” J. Humanit. Logist. Supply Chain Manag., vol. 11, no. 2, pp. 347–366, 2021, doi: 10.1108/JHLSCM-09-2020-0077.
Copyright (c) 2024 The Authors. Published by Universitas Airlangga.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
All accepted papers will be published under a Creative Commons Attribution 4.0 International (CC BY 4.0) License. Authors retain copyright and grant the journal right of first publication. CC-BY Licenced means lets others to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially).