Adaptive Ant Colony Optimization on Mango Classification Using K-Nearest Neighbor and Support Vector Machine
Downloads
Abstract” Leaves recognition can use an image edge detection method. In this research, the classification of mango gadung and manalagi will be performed. In the preprocess stage edge detection method using adaptive ant colony optimization method. The use of adaptive ant colony optimization method aims to optimize the process of edge detection of a mango leaves the bone image. The application of ant colony optimization method on mango leaves classification has successfully optimized the result of edge detection of a mango leaves the bone structure. Results showed edge detection using adaptive ant colony optimization method better than Roberts and Sobel method. The result an experiment of mango leaves classification with k-nearest neighbor method get accuracy value equal to 66,25%, whereas with the method of support vector machine obtained accuracy value equal to 68,75%.
Keywords” Edge Detection, Ant Colony Optimization, Classification, K-Nearest Neighbor, Support Vector Machine
Charu, & Sunanda. (2013). Edge Detection of an Image Based on Ant Colony Optimization Technique. International Journal of Science and Research, 2(6), 114–120.
Dorigo, Birattari, & Stutzle. (2006). Ant Colony Optimization: Artificial Ants as a Computational Intelligence Technique. IEEE Computational Intelligence Magazine.
Fu, & Chi. (2006). Combined thresholding and neural network approach for vein pattern extraction from leaf images. Image Signal Process, 153(6).
Gonzales, & Wood. (1992). Digital Image Processing. Addison Wesley.
Goujon, Chaoqun, & Jianhong. (2007). Data Clusterin Theory, Algorithms, and Applications. Virginia: SIAM.
Jabal, Mohamad, Suhardi, Salehuddin, & Illiasak. (2013). Leaf Features Extraction and Recognition Approaches to Classify Plant. Journal of Computer Science, 9, 1295–1304.
Jiang, Weiyu, & Shengli. (2008). An Ant Colony Optimization Algorithm For Image Edge Detection. IEEE Congress on Evolutionary Computation, (pp. 751–56).
Liantoni. (2015). Klasifikasi Daun Dengan Perbaikan Fitur Citra Menggunakan Metode K-Nearnest Neighbor. ULTIMATICS, Jurnal Teknik Informatika, 7(2), 98–104.
Liantoni, & Cahyani. (2017). Pemanfaatan Hierarchical Clustering Untuk Pengelompokkan Daun Berdasarkan Fitur Moment Invariant. Jurnal Ilmiah Edutic, 3(2), 91–98.
Liantoni, & Nugroho. (2015). Klasifikasi Daun Herbal Mengggunakan Metode Naí¯ve Bayes Classifier dan K-Nearest Neighbor. Jurnal Simantec, 5(1), 9–16.
Liantoni, Kartika, & Tri. (2014). Adaptive Ant Colony Optimization based Gradient for Edge Detection. Journal of Computer Science, 7(2), 78–84.
Liantoni, Suciati, & Fathicha. (2015). Modifikasi Ant Colony Optimization Berdasarkan Gradient Untuk Deteksi Tepi Citra. Jurnal Buana Informatika, 6(3), 43–52.
Om, P., Hanmandlu, Sultania, & Dhruv. (2010). A Novel Fuzzy Ant System For Edge Detection. IEEE/ACIS International Conference on Computer and Information Science, (pp. 228–33).
Prasetyo, & Eko. (2012). Data Mining: Konsep Dan Aplikasi Menggunakan MATLAB. Yogyakarta: Andi Offset.
Rahebi, Elmi, & Shayan. (2010). Digital image edge detection using an ant colony optimization based on genetic algorithm. IEEE Conference In Cybernetics and Intelligent Systems (CIS), (pp. 145–49).
Riska, S., Cahyani, L., & Rosadi, M. (2015). Klasifikasi Jenis Tanaman Mangga Gadung dan Mangga Madu Berdasarkan Tulang Daun. Jurnal Buana Informatika, 6(1), 41-50.
Authors who publish with this journal agree to the following terms:
All accepted papers will be published under a Creative Commons Attribution 4.0 International (CC BY 4.0) License. Authors retain copyright and grant the journal right of first publication. CC-BY Licenced means lets others to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially).