Efficacy of Parquetina nigrescens Leaf Extract on Growth Performance and Gastrointestinal Response of Japanese Quails

Downloads
Japanese quail has the potential to complement the gap in the protein need of Nigerians. This study aimed to evaluate the effects of varying inclusion levels of Parquetina nigrescens leaf extract (PNLE) on the growth performance, gastrointestinal response, and plasma response of Japanese quails (Coturnix coturnix japonica). Fresh leaves of P. nigrescens were harvested. Two-hundred day old of unsexed Japanese quails were weighed and randomly allocated to 5 dietary treatment groups with forty birds at 4 replicates of 10 chicks, respectively. The leaf was obtained by harvesting and blending the leaves, using 50 g of leaves in 1000 mL of water. The treatment were as follows: (T1) which is the control did not receive any PNLE, T2, T3, T4 and T5 administered 0.2, 0.4, 0.6, 0.8 mL of PNLE per 500 mL of water, respectively, for 6 week of experiment. Feed and water were provided ad libitum and mortality was recorded as it occurred. Parameters measured were performance (feed intake, weight gain, feed conversion ratio (FCR) and gastrointestinal response (Internal organ of GIT and morphometrics). All data were subjected to analysis of variance using Duncan’s multiple range test in SAS (2010) where p value < 0.005 was considered to be statistically significant. For performance, the results showed that the administration of PNLE did not have significant influence (p > 0.05) on all the parameters in the starter and finisher phases. It was observed that when all the parameters were put together without considering the phases, all the parameters considered were not significant (p > 0.05) except feed conversion ratio (FCR) with the highest value being in T1 (5.041) and the lowest value being T4 (3.183). For the gastrointestinal response parameters, the inclusion of PNLE had significant effect (p < 0.05) on crop pH, proventriculus temperature, proventriculus pH, gizzard weight, gizzard temperature, relative gizzard weight, jejunum length and ileum temperature. It was concluded that the inclusion of PNLE had no detrimental effect on growth performance, gastrointestinal response and plasma of Japanese quail, hence it can be used up to 0.4 mL into 500 mL of water.
Abu Hafsa, S. H., Ibrahim, S. A., Eid, Y. Z., & Hassan, A. A. (2020). Effect of dietary Moringa oleifera leaves on the performance, ileal microbiota and antioxidative status of broiler chickens. Journal of Animal Physiology and Animal Nutrition, 104(2), 529–538.
Abudabos, A. M., Alyemni, A. H., Dafalla, Y. M., & Khan, R. U. (2018). The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. Journal of Applied Animal Research, 46(1), 691–695.
Akintunde, A. O., Ndubuisi-Ogbonna, L. C., Sobowale, A., Irorevbo, H. E., Ojo, O. A., Oyewumi, S. O., Shobo, B. A., Akinboye, O. E., & Ngozi, E. O. (2023a). Antioxidant Potentials of Parquetina nigrescens Leaf Extract Administration in Broiler Chicken Production. International Journal of Pharmaceutical and Phytopharmacological Research, 13(5), 19–26.
Akintunde, A. O., Ndubuisi-Ogbonna, L. C., Olorunfemi, O. A., Ladele, M. M., Ojo, O. A., Adewumi, A., & Akinboye, O. E. (2023b). Growth Pattern and Physiological Response of Japanese Quails to Administered Aqueous Solution of Egg Lime Molasses Mixture. Agricultural Science Digest, 8(1).
Akintunde, A. O., Omole, C. A., Sokunbi, O. A., Lawal, T. T., & Alaba, O. (2011). Response of growing pigs to diet physical form and Allzyme® SSF supplementation in a palm kernel meal-based diet. Animal Production, 13(2), 69–75.
Akintunde, A. O., Toye, A. A., & Ademola, A. A. (2021): Effects of dietary Moringa Oleifera seed meal on obesity, liver and kidney functional parameters of local and exotic chickens. Aceh Journal of Animal Science, 6(3), 97–103.
Ali, A., Ponnampalam, E. N., Pushpakumara, G., Cottrell, J. J., Suleria, H. A. R., & Dunshea, F. R. (2021). Cinnamon: A Natural Feed Additive for Poultry Health and Production-A Review. Animals, 11(7), 2026.
Al-Tekreeti, M. A. I., & Allaw, A. A. (2022). Effect of adding nano garlic to the quail’s diet on productive performance. Biochemical and Cellular Archives, 22(1), 2637–2640.
Ao, T., Cantor, A. H., Pescatore, A. J., & Pierce, J. L. (2008). In vitro evaluation of feed-grade enzyme activity at pH levels simulating various parts of the avian digestive tract. Animal Feed Science and Technology, 140, 462–468.
Arike, L., Seiman, A., van der Post, S., Piñeiro, A. M. R., Ermund, A., Schütte, A., Bäckhed, F., Johansson, M. E., & Hansson, G. C. (2020). Protein turnover in epithelial cells and mucus along the gastrointestinal tract is coordinated by the spatial location and microbiota. Cell Reports, 30(4), 1077–1087.
Asghar, M. U., Doğan, S. C., Wilk, M., & Korczyński, M. (2022). Effect of Dietary Supplementation of Black Cumin Seeds (Nigella sativa) on Performance, Carcass Traits, and Meat Quality of Japanese Quails (Coturnix coturnix japonica). Animals, 12(10), 1298.
Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Schwaiger, S., Heiss, W. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614.
Ayoola, A. A., Malheiros, R. D., Grimes, J. L., & Ferket, P. R. (2015). Effect of dietary exogenous enzyme supplementation on enteric mucosal morphological development and adherent mucin thickness in Turkeys. Frontiers in Veterinary Science, 2, 45.
Ayoola, A. O., Akinloye, O., Oguntibeju, O. O., Oke, J. M., & Odetola, A. A. (2011). Antioxidant activities of Parquetina nigrescens. African Journal of Biotechnology, 10(24), 4920–4925.
Biasato, I., Ferrocino, I., Biasibetti, E., Grego, E., Dabbou, S., Sereno, A., Gai, F., Gasco, L., Schiavone, A., Cocolin, L., & Capucchio, M. T. (2018). Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Veterinary Research, 14, 1–15.
Datté, J. Y., & Ziegler, A. (2001). Pharmacological investigation on nigrescigenin‐a cardenolide from Parquetina nigrescens (Afzel.) Bullock: comparative studies on cardiotonic effects of Parquetina nigrescens, g‐strophanthin and noradrenaline in guinea‐pig isolated atria. Journal of Pharmacy and Pharmacology, 53(6), 859–866.
Delgado, C. L. (2003). Rising consumption of meat and milk in developing countries has created a new food revolution. The Journal of Nutrition, 133(11), 3907S–3910S.
Ebrahimzadeh, S. K. B., Farhoomand, N. P., & Aghjehgheshlagh, F. M. (2018). Effects of exogenous tannase enzyme on growth performance, antioxidant status, immune response, gut morphology and intestinal microflora of chicks fed grape pomace. South African Journal of Animal Science, 48, 1–18.
El-Katcha, M. I., Soltan, M., Ramdan, S. S., El Naggar, M. K., & El-Shobokshy, S. A. (2015). Growth Performance, Blood biochemical changes, carcass traits and nutrient digestibility of growing Japanese quail fed on various dietary Protein and calcium levels. Alexandria Journal of Veterinary Science, 44(1), 5–10.
Ensari, A., & Marsh, M. N. (2018). Exploring the villus. Gastroenterology and Hepatology from Bed to Bench, 11, 181–190.
Fikri, F., & Purnama, M. T. E. (2020). Biosecurity Application of Small Scale Chicken Abattoir in Sidoarjo, East Java, Indonesia. Systematic Reviews in Pharmacy, 11(6), 226–229.
Guédé, N. Z., N’guessan, K., Dibié, T. E., & Grellier, P. (2010). Ethnopharmacological study of plants used to treat malaria, in traditional medicine, by Bete Populations of Issia (Côte d’Ivoire). Journal of Pharmaceutical Sciences and Research, 2(4), 216–227.
Hamid, I. S., Aksono, E. B., Sukmanadi, M., & Purnama, M. T. E. (2018). Antiangiogenesis activity test of tin leaf (Ficus carica L.) on the number of blood vessels and VEGF expression of chorioallantoic membrane of embryonated chicken eggs. European Journal of Oncology Pharmacy, 1(4), e00007.
Hassouna, E. M. A. (2001). Some anatomical and morphometrical studies on the intestinal tract of chicken, duck, goose, turkey, pigeon, dove, quail, sparrow, heron, jackdaw, hoopoe, kestrel and owl. Assiut Veterinary Medical Journal, 44, 47–78.
Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods, 6(7), 53.
Hinton, A., Jr, Buhr, R. J., & Ingram, K. D. (2000). Physical, chemical, and microbiological changes in the crop of broiler chickens subjected to incremental feed withdrawal. Poultry Science, 79(2), 212–218.
Hollingsworth, M. A., & Swanson, B. J. (2004). Mucins in cancer: protection and control of the cell surface. Nature Reviews Cancer, 4, 45–60.
Imaga, N. O., Gbenle, G. O., Okochi, V. I., Adenekan, S. O., Edeoghon, S. O., Kehinde, M. O., Bamiro, S. B., Ajiboye, A., & Obinna. A. (2010). Antisickling and toxicological profiles of leaf and stem of Parquetina nigrescens. Journal of Medicinal Plants Research, 4(8), 639–643.
Jamroz, D. (2005). Comparative characteristics of gastrointestinal tract development and digestibility of nutrients in young chickens, ducks and geese. Proceedings of the 15th European Symposium on Poultry Nutrition. Balatonfured. Hungary; 25–29 Sept 2005. Pp: 74–85.
Kartikasari, A. M., Hamid, I. S., Purnama, M. T. E., Damayanti, R., Fikri, F., & Praja, R. N. (2019). Isolation And Identification Of Escherichia Coli As Bacterial Contamination In Broiler Chicken Meat In Poultry Slaughterhouse Lamongan District. Jurnal Medik Veteriner, 2(1), 66–71.
Kaunitz, J. D., & Akiba, Y. (2019). Control of intestinal epithelial proliferation and differentiation: the microbiome, enteroendocrine L cells, telocytes, enteric nerves, and GLP, too. Digestive Diseases and Sciences, 64, 2709–2716.
Kim, J. J., & Khan, W. I. (2013). Goblet cells and mucins: role in innate defense in enteric infections. Pathogens, 2, 55–70.
Kirana, P., Lintang, A., Lovela, A. R., Lokapirnasari, W. P., Al-Arif, M. A., Hidanah, S., & Warsito, S. H. (2024). Efficacy of Probiotics on Nutrient Intake and Egg Weight in Japanese Quail (Coturnix coturnix japonica). Jurnal Medik Veteriner, 7(2), 228–234.
Kurniawati, D. Y., Puspitasari, Y., Yudhana, A., Saputro, A. L., Dhamayanti, Y., Purnomo, A., Bayram, M., & Purnama, M. T. E. (2024). Sex determination in Japanese quails (Coturnix japonica) based on head morphometry variation among age. Biodiversitas Journal of Biological Diversity, 25(8), 2740–2748.
Luo, D., Yang, F., Yang, X., Yao, J., Shi, B., & Zhou, Z. (2009). Effects of xylanase on performance, blood parameters, intestinal morphology, microflora and digestive enzyme activities of broilers fed wheat-based diets. Asian-Australasian Journal of Animal Sciences, 22(9), 1288–1295.
Mabelebele, M., Alabi, O. J., Ng`ambi, J. W., Norris, D., & Ginindza, M. M. (2014). Comparison of Gastrointestinal Tracts and pH Values of Digestive Organs of Ross 308 Broiler and Indigenous Venda Chickens Fed the Same Diet. Asian Journal of Animal and Veterinary Advances, 9, 71–76.
Mustafa, M. M., Karadas, F., & Tayeb, I. T. (2021). Adding different levels of turmeric powder and curcumin in the diet on broiler performance, carcass traits, immunity and gut morphology of broiler chicken under normal and heat stress condition. Iraqi Journal of Agricultural Sciences, 52(2), 512–526.
Nichol, R., & Steiner, T. (2008). Efficacy of phytogenics in commercial Lohmann brown layers. In: Feed Ingredient and Additives Asia Pacific Conference, March 5, Bangkok, Thailand.
Odetola, A. A., Oluwole, F. S., Adeniyi, B. A., Olatiregun, A. M., Ikupolowo, O. R., Labode, O., Busari, K. O., & Shorinola, J. A. (2006). Antimicrobial and gastrointestinal protective properties of Parquetina nigrescens (Afzel.) Bullock. Journal of Biological Sciences, 6(4), 701–705.
Okanlawon, E. O., Bello, K. O., Akinola, O. S., Oluwatosin, O. O., Irekhore, O. T., & Ademolue, R. O. (2020). Carcass yield and intestinal morphology of male rabbits fed diets supplemented with turmeric (Curcuma longa) powder. Ghana Journal of Agricultural Science, 55(2), 97–106.
Olumide, M. D., Akintunde, A. O., Ndubuisi-Ogbonna, L. C., Shobo, B. A., Oreagba, T., & Isiadinso, I. (2022). Nutritional and Ethnomedicinal Potentials of Parquetina nigrescens Leaf Extracts in Livestock Production. Tropical Animal Production Investigation, 25 (01), 15–26.
Oluwafemi, F., & Debiri, F. (2008) Antimicrobial effect of Phyllanthus amarus and Parquetina nigrescens on Salmonella typhi. African Journal of Biomedical Research, 11(2), 215–219.
Omoikhoje, S. O., Bamgbose, A. M., & Aruna, M. B. (2008). Replacement value of unpeeled cassava root meal (UCRM) for maize in weaner Rabbit Diets. Nigerian Journal of Animal Production, 35, 63–68.
Oreagba, T. (2022). Performance and immunological response of broiler chickens to Parquetina nigrescens leaf extract. (Bachelor of Agriculture Degree project, Department of Agriculture and Industrial Technology, Babcock University, Ilishan-Remo, Ogun state) Nigeria.
Owolabi, J., Malik, A., & Adama, T. Z. (2017). Effects of aqueous Moringa oleifera leaf extracts on gut morphology and pH of hubbard broiler chickens. Nigerian Journal of Animal Production, 44(1), 97–105.
Owoyele, B. V., Nafiu, A. B., Oyewole, I. A., Oyewole, L. A., & Soladoye, A. O. (2009). Studies on the analgesic, anti-inflammatory and antipyretic effects of Parquetina nigrescens leaf extract. Journal of Ethnopharmacology, 122(1), 86–90.
Ozaslan, M. (2011). Parquetina nigrescens checks the ulceration and oxidation. Pakistan Journal of Biological Sciences, 14(24), 1124–1125.
Parsaie, S., Shariatmadari, F., Zamiri, M. J., & Khajeh, K. (2007). Influence of wheat-based diets supplemented with xylanas, bile acid and antibiotics on performance, digestive tract measurements and gut morphology of broilers compared with a maize-based diet. British Poultry Science, 48, 594–600.
Prakatur, I., Miskulin, M., Pavic, M., Marjanovic, K., Blazicevic, V., Miskulin, I., & Domacinovic, M. (2019). Intestinal Morphology in Broiler Chickens Supplemented with Propolis and Bee Pollen. Animals, 9, 301.
Rahmani, H. R., Speer, W., & Modirsanei, M. (2005). The effect of intestinal pH on broiler performance and immunity. International Journal of Poultry Science, 4, 713–717.
Reda, F. M., El-Saadony, M. T., Elnesr, S. S., Alagawany, M., & Tufarelli, V. (2020). Effect of Dietary Supplementation of Biological Curcumin Nanoparticles on Growth and Carcass Traits, Antioxidant Status, Immunity and Caecal Microbiota of Japanese Quails. Animals, 10(5), 754.
Saba, A. B., Oyagbemi, A. A., & Azeez, O. I. (2010). Antidiabetic and haematinic effects of Parquetina nigrescens on alloxan induced type-1 diabetes and normocytic normochromic anaemia in Wistar rats. African Health Sciences, 10(3), 276–282.
Sang-Oh, P., Chae-Min, R., Byung-Sung, P., & Jong, H. (2013). The meat quality and growth performance in broiler chickens fed diet with cinnamon powder. Journal of Environmental Biology, 34(1), 127.
SAS (2002). Statistical Analysis System Institute. Users Guide Version 9 for Windows. Cary North Carolina USA.
Simaraks, S., Chinrasri, O., & Aengwanich, W. (2004). Haematological electrolyte and serum biochemistry values of the Thai indigenous chickens (Gallus domesticus) in North Eastern Thailand. Songklanakarin Journal of Science and Technology, 26, 425–430.
Sobolewska, A., Bogucka, J., Dankowiakowska, A., Elminowska-Wenda, G., Stadnicka, K., & Bednarczyk, M. (2017). The impact of synbiotic administration through in ovo technology on the microstructure of a broiler chicken small intestine tissue on the 1st and 42nd day of rearing. Journal of Animal Science and Biotechnology, 8, 61.
Svihus, B. (2014). Function of the digestive system. Journal of Applied Poultry Research, 23(2), 306–314.
Ugboko, H. U., Nwinyi, O. C., Oranusi, S. U., Fatoki, T. H., & Omonhinmin, C. A. (2020). Antimicrobial Importance of Medicinal Plants in Nigeria. The Scientific World Journal, 2020, 7059323.
Ustundag, A. M., & Ozdogan, M. (2023). Effects of mulberry leaves on growth performance, carcass characteristics, and meat quality of Japanese quail. South African Journal of Animal Science, 53(1), 82–90.
Wardhana, D. K., Haskito, A. E. P., Purnama, M. T. E., Safitri, D. A., & Annisa, S. (2021). Detection of microbial contamination in chicken meat from local markets in Surabaya, East Java, Indonesia. Veterinary World, 14(12), 3138.
Wardhana, D. K., Purnama, M. T. E., Kean, O. H., & Tyasningsih, W. (2019). Detection of salmonella on chicken meat using immunomagnetic separation and conventional methods from traditional market in Surabaya, East Java, Indonesia. The Indian Veterinary Journal, 96(11), 31–33.
Wu, Q. J., Zhou, Y. M., Wu, Y. N., & Wang, T. (2013). Intestinal development and function of broiler chicken on diets supplemented with clinoptilolite. Asian-Australasian Journal of Animal Sciences, 26(7), 987–994.
Xu, Z. R., Hu, C. H., Xia, M. S., Zhan, X. A., & Wang, M. Q. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Science, 82(6), 1030–1036.
Yamauchi, K., & Isshiki, Y. (1991). Scanning electron microscopic observations on the intestinal villi in growing white leghorn and broiler chickens from 1 to 30 days of age. British Poultry Science, 32(1), 67–78.
Yu, B., Tsai, C. C., Hsu, J. C., & Chiou, P. S. (1998). Effect of different sources of dietary fibre on growth performance, intestinal morphology and caecal carbohydrases of domestic geese. British Poultry Science, 39(4), 560–567.
Zhang, H., Li, D., Liu, L., Xu, L., Zhu, M., He, X., & Liu, Y. (2019). Cellular Composition and Differentiation Signaling in Chicken Small Intestinal Epithelium. Animals, 9(11), 870.
Copyright (c) 2025 Adeyinka Oye Akintunde, Lois Chidinma Ndubuisi-Ogbonna, Oluwaseyi Esther Ogundipe, Samuel Inioluwa Akeju, Olufunso Emmanuel Akinboye, Oluwaseun Adetayo Adewole, Rufus Olusegun Animashaun

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish in this journal agree to the following terms:
1. The journal allows the author to hold the copyright of the article without restrictions;
2. The journal allows the author(s) to retain publishing rights without restrictions;
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA).