The Effect Of Immersion Time Variation in Polyvynyl Piprolidone Against Characteristics Of Scaffold Biocomposit Of Bacterial-Hydrocysiatatic Cellulose as Candidate

ludita indrio

= http://dx.doi.org/10.20473/jscrte.v2i2.11893
Abstract views = 36 times | views = 33 times

Abstract


Bone defects due to trauma, tumors, congenital abnormalities, degeneration and other diseases are still major problems in the field of orthopedics and traumatology. Based on data in Asia, Indonesia is the country with the highest number of fracture sufferers, there are as many as 300-400 cases of bone surgery per month in hospitals. Dr. Soetomo Surabaya (Gunawarman et al, 2010). Repair of damaged bones can be overcome with material that can accelerate the process of bone healing (bone healing). This research was conducted to synthesize hydroxyaparite bacterial cellulose scaffold as a candidate for bone healing. Bacterial cellulose as a matrix was synthesized by culturing Acetobacter xylnum, while hydroxyapatite as filler was synthesized by immersion into a solution of CaCl2 and Na2HPO4, the scaffold formation process using freeze dried method. Composite formation was varied by immersion in Polyvynil pirrolidone (PVP) for 0, 1, 2, 3, 4 days. Furthermore, samples were characterized using FTIR-Spectroscopy showing the presence of carbonates containing apatite crystals in all five samples.

Keywords


bone healing, scaffold, bacterial cellulose, hydroxyapatite, polyvynil pirrolidone

Full Text:

PDF

References


Al-Shamary, Elhan Esmaeel dan Al-Darwash, Amir Khalaf. 2013. Infleuncene of Fermentation Condition and Alkali Treatment on The porosity and Thickness Bacterial Cellulose Membranes. The Online Journal of Science and Technology, Volume 3, Issue 2.

Bahrololoom ME., et al. 2009. Characteristic of Natural Hydroxyapatite Extracted from Bovin Cortical Bone Ash. Journal of Ceramic Processing Research 10(2): 129-138.

Departemen Kesehatan Republik Indonesia. 1979. Farmakope Indonesia Edisi III. Departemen Kesehatan Republik Indonesia: Jakarta.

Flottmann, Hubertus, dan Quadir, Anisul. 2008. Polyvynil pyrrolidone (PVP) – One of The Most Widely Used Exipients in The Pharmaceuticals: An Overview. Drug Delivery Technology.

Gunawarman, Malik, A., Mulyadi S., Riana, Hayati, A. 2010. Karakteristik Fisik dan Mekanik Tulang Sapi Variasi Berat Hidup sebagai Referensi Desain Material Implan. Seminar Nasional Tahunan Teknik Mesin (SNMTTM) ke- 9.

Helenius, G., et al. 2006. In Vivo Biocompatibility of Bacterial Cellulose. J Biomed Mater Res A 76: 431-438.

Hutchens, SA., et al. Composite Material. United States Patent 20040096509.

Indrani, Decky J. 2012. Komposit Hidroksiapatit Kalsinasi Suhu Rendah dengan Alginat Sargassum Duplicatum atau Sargassum Crassifolium sebagai Material Scaffold untuk Pertumbuhan Sel Punca Mesenkimal. Universitas Indonesia: Jakarta.

Jiang, Liuyun., Li, Yubao., Wang, Xuejiang., Zhang Li., Wen Jiqie., Gong, Mei. 2008. Preparation and Properties of Nano- hydroxyapatite/Chitosan/Carboxymetyl Cellulose Composite Scaffold. Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University: China.

Kawai, T., et al. 2004. Coating on an Apatite Layer on Polyamide Films Containing Sulfonic Groups by a Biomimetic Process. Biomaterials, 25, 4529-4534.

Keaveny, Tony M. 2004. Bone Mechanics. Universitas of California, San Frasisco, California and Unversitas of California, Berkeley, California.

Kokubo, T dan Takadama, H. 2006. How Useful is SBF in Predicting In Vivo Bone Bioactivity,b Biomaterials. 27 (15), 2907-2915.

Saska, S., et al. 2011. Bacterial Cellulose-Hydroxyapatite Nanocompocytes for Bone Regeneration. International Journal of Biomaterials. Volume 2011. University Estadual Paulista: Brazil.

Sulistiono, GS. dkk. 2012. Sintesis Hidroksipatit Berpori dengan Porogen Kitosan dan Karakteristiknya. PAIR BATAN: Jakarta.

Shoda, M., et al. 2005. Recent Advamces in Bacterial Cellulose Production. Biotechnology and Bioprocess Engineering, 10, 1-8.

Tazi, Neftaha., et al. 2012. Hidroxyapatite Bioactivated Bacterial Cellulose Promotes Osteoblast Growth and The Formation of Bone Nodules. AMB Express, a Springer Open Journal.

Torres, Fernando G., et al. 2012. Biocompatibility of Bacterial Celullose Based Biomaterials. Journal of Functional Biomaterials.

Warastuti, Yessy dan Suryani, Nani. 2013. Karakteristik Degradasi dari Biomaterial Poli (kaprolakton-kitosan-hidroksiapatit) Iradiasi dalam Larutan Simulated Body Fluid. Pusat Aplikasi Teknologi Isotop dan Radiasi, BATAN: Jakarta Selatan.

Windarti, Tri dan Astuti, Yayuk. 2006. Pengaruh Konsentrasi Ca2+ dan PO43 pada Pembentukan Hidroksiapatit dalam Matriks Selulosa Bakteri. Universitas Diponegoro: Semarang.

Yamane, C., et al. 2004. Novel Cellulose-Type Material. United States Patent 20040267006, Desember 30, 2004.

Yin, Na., Chen, Shi-yan., Ouyang, Yang., Tang, Liang., Yang, Jing-xuan., Wang, Hua-ping.. 2011. Biomimetic Mineraliation Synthetis of Hydroxyapatite Bacterial Cellulose Nanocomposite. Donghua University:Shanghai


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Journal of Stem Cell Research and Tissue Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.