CHARACTERIZATION OF AUTOFLUORESCENCE AS AN INDICATOR OF ACTIVATION STATE IN NEURAL STEM CELLS
Downloads
Recent advancements in stem cell research have uncovered a novel autofluorescence marker pivotal for investigating the dormant state of stem cells. This marker presents a groundbreaking opportunity to monitor the transition of stem cells from a quiescent to an active state, facilitating the identification of cells entering the cell cycle. The primary objective of this research is to comprehensively review this marker's efficacy with the aim of developing therapeutic strategies for generating human nerve cells. A systematic literature search initially yielded 2297 articles on autofluorescence characterization as an indicator of activation state in neural stem cells (NSCs). However, only three articles met the stringent inclusion criteria, underscoring the novelty and scarcity of research in this domain. Autofluorescence, particularly in NSCs, offers a non-invasive approach to studying molecular processes and discerning various activation states, obviating the need for external labels. This technique not only preserves the intrinsic properties of cells but also circumvents biases inherent in traditional labeling methods. Moreover, when coupled with cutting-edge technologies such as Optical Coherence Tomography with Spectral Inverse Analysis (OCSI), it enables precise, real-time monitoring of metabolic alterations in NSCs during their transition from dormancy to activity.
Bertolo, A., Guerrero, J. and Stoyanov, J. (2020), "Autofuorescence"‘based sorting removes senescent cells from mesenchymal stromal cell cultures”, Scientific reports, Vol. 10 No. 1, pp. 19084.
Bond, A. M., Ming, G-L. and Song, H. (2015), "Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later”, Cell stem cell, Vol. 17 No. 4, pp. 385-95.
Datta, R., Heaster, T. M., Sharick, J. T., Gillette, A. A. and Skala, M. C. (2020), "Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications”, Journal of biomedical optics, Vol. 25 No. 7, pp. 1-43.
Doetsch, F., Caillé, I., Lim, D. A., GarcíaVerdugo, J. M. and Alvarez-Buylla, A. (1999), "Subventricular zone astrocytes are neural stem cells in the adult mammalian brain”, Cell, Vol. 97 No. 6, pp. 703-16.
Duan, X., Kang, E., Liu, C. Y., Ming, G-L. and Song, H. (2008), "Development of neural stem cell in the adult brain”, Current opinion in neurobiology, Vol. 18 No. 1, pp. 108-15.
Fukuda, S., Kato, F., Tozuka, Y., Yamaguchi, M., Miyamoto, Y. and Hisatsune, T. (2003), "Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus”, The journal of neuroscience : the official journal of the Society for Neuroscience, Vol. 23 No. 28, pp. 9357-66.
Gardner, M. R., Rahman, A. S., Milner, T. E. and Rylander, H. G. (2019), "Scattering-Angle-Resolved Optical Coherence Tomography of a Hypoxic Mouse Retina Model”, Journal of Experimental Neuroscience, Vol. 13.
Harada, Y., Yamada, M., Imayoshi, I., Kageyama, R., Suzuki, Y., Kuniya, T., Furutachi, S., Kawaguchi, D. and Gotoh, Y. (2021), "Cell cycle arrest determines adult neural stem cell ontogeny by an embryonic Notch-nonoscillatory Hey1 module”, Nature communications, Vol. 12 No. 1, pp. 6562.
Jessberger, S. and Kempermann, G. (2003), "Adult-born hippocampal neurons mature into activity-dependent responsiveness”, The European journal of neuroscience, Vol. 18 No. 10, pp. 2707-12.
Karamata, B., Leutenegger, M., Laubscher, M., Bourquin, S., Lasser, T. and Lambelet, P. (2005), "Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography”, Journal of the Optical Society of America A, Vol. 22 No. 7, pp. 1380-8.
Kempermann, G., Jessberger, S., Steiner, B. and Kronenberg, G. (2004), "Milestones of neuronal development in the adult hippocampus”, Trends in Neurosciences, Vol. 27 No. 8, pp. 447-52.
Knobloch, M., Pilz, G-A., Ghesquière, B., Kovacs, W. J., Wegleiter, T., Moore, D. L., Hruzova, M., Zamboni, N., Carmeliet, P. and Jessberger, S. (2017), "A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity”, Cell reports, Vol. 20 No. 9, pp. 2144-55.
Kriegstein, A. and Alvarez-Buylla, A. (2009), "The glial nature of embryonic and adult neural stem cells”, Annual review of neuroscience, Vol. 32, pp. 149-84.
Kriegstein, A. R. and Götz, M. (2003), "Radial glia diversity: a matter of cell fate”, Glia, Vol. 43 No. 1, pp. 37-43.
Kronenberg, G., Reuter, K., Steiner, B., Brandt, M. D., Jessberger, S., Yamaguchi, M. and Kempermann, G. (2003), "Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli”, The Journal of comparative neurology, Vol. 467 No. 4, pp. 455-63.
Leeman, D. S., Hebestreit, K., Ruetz, T., Webb, A. E., McKay, A., Pollina, E. A., Dulken, B. W., Zhao, X., Yeo, R. W., Ho, T. T., Mahmoudi, S., Devarajan, K., Passegué, E., Rando, T. A., Frydman, J. and Brunet, A. (2018), "Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging”, Science, Vol. 359 No. 6381, pp. 1277-83.
Li, X., Peng, X., Yang, S., Wei, S., Fan, Q., Liu, J., Yang, L. and Li, H. (2022), "Targeting tumor innervation: premises, promises, and challenges”, Cell death discovery, Vol. 8 No. 1, pp. 131.
Lledo, P-M. and Valley M. (2016), "Adult Olfactory Bulb Neurogenesis”, Cold spring harbor perspectives in biology, Vol. 8 No. 8, p. a018945.
Morrow, C. S., Porter, T. J., Xu, N., Arndt, Z. P., Ako-Asare, K., Heo, H. J., Thompson, E. A. N. and Moore, D. L. (2020), "Vimentin Coordinates Protein Turnover at the Aggresome during Neural Stem Cell Quiescence Exit”, Cell stem cell, Vol. 26 No. 4, pp. 558-68.
Morrow, C. S., Tweed, K., Farhadova, S., Walsh, A. J., Lear, B. P., Roopra, A., Risgaard, R. D., Klosa, P. C., Arndt, Z. P., Peterson, E. R., Chi, M. M., Harris, A. G., Skala, M. C. and Moore, D. L. (2024), "Autofluorescence is a biomarker of neural stem cell activation state”, Cell stem cell, Vol. 31 No. 4, pp. 570-81.
Thelen, A. M. and Zoncu, R. (2017), "Emerging Roles for the Lysosome in Lipid Metabolism”, Trends in cell biology, Vol. 27 No. 11, pp. 833-50.
Vadodaria, K. C. and Gage, F. H. (2014), "SnapShot: adult hippocampal neurogenesis”, Cell, Vol. 156 No. 5, pp. 1114 e1.
van Velthoven, C. T. J. and Rando, T. A. (2019), "Stem Cell Quiescence: Dynamism, Restraint, and Cellular Idling”, Cell stem cell, Vol. 24 No. 2, pp. 213-25.
Zhang, J. and Jiao, J. (2015), "Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis”, BioMed research international, Vol. 2015, pp. 727542.
Zhao, X. and Moore, D. (2018), "Neural stem cells: developmental mechanisms and disease modeling”, Cell and tissue research, Vol. 371 No. 1, pp. 1-6.
Copyright (c) 2024 Rachma Khairun Nisaa

This work is licensed under a Creative Commons Attribution 4.0 International License.
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without ristrictions.
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution (CC BY).