THE POTENTIAL OF PLURIPOTENT STEM CELL-BASED THERAPY AND EXTRACELLULAR VESICLES IN PROMOTING TISSUE REGENERATION
Downloads
Stem cell research has paved the way for revolutionary regenerative therapies targeting damaged and diseased tissues. Beyond traditional cell transplantation, current evidence suggests that therapeutic benefits are primarily mediated through paracrine effects. Extracellular vesicles (EVs), which can traverse biological barriers and deliver bioactive molecules, represent a promising avenue for cell-free therapy. Tissue engineering, as the second-generation regenerative innovation, integrates biodegradable 3D scaffolds with cells to mimic natural extracellular matrices, enhancing therapeutic outcomes. This study examines the potential of EVs across diverse applications. In ocular regeneration, neural progenitor-derived EVs preserve photoreceptor cells and mitigate retinal inflammation in retinitis pigmentosa. For skin repair, EVs derived from mesenchymal stem cells (MSCs) support key phases of wound healing by modulating macrophage polarization and activating molecular pathways like RAC-alpha and Notch signaling. In cardiovascular therapy, EVs contribute to heart tissue recovery, reduce myocardial apoptosis, and combat fibrosis through targeted gene modulation. Skeletal muscle regeneration benefits from EVs enhancing myogenic differentiation, decreasing fibrosis, and addressing excessive extracellular matrix accumulation common in disorders like muscular dystrophy. The ability of EVs to emulate paracrine signaling processes expands the horizons of regenerative medicine, offering a scalable and efficient alternative to cell-based therapies. Literature highlights the critical role of high-quality, large-scale production under stringent standards to ensure therapeutic consistency. These findings underscore EVs as potent, cell-free agents capable of driving tissue repair and regeneration. Further investigations are encouraged to optimize production, application, and integration with advanced biomaterials for clinical efficacy.
Bian, B., Zhao, C., He, X., Gong, Y., Ren, C., Ge, L., Zeng, Y., Li, Q., Chen, M., Weng, C., He, J., Fang, Y., Xu, H. and Yin, Z. Q. (2020), “Exosomes derived from neural progenitor cells preserve photoreceptors during retinal degeneration by inactivating microglia”, Journal of Extracellular Vesicles, Vol. 9 No. 1.
Choi, J. S., Yoon, H. I., Lee, K. S., Choi, Y. C., Yang, S. H., Kim, I. S. and Cho, Y. W. (2016), “Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and
provide biochemical cues for skeletal muscle regeneration”, Journal of Controlled Release, Vol. 222, pp. 107-15.
Chu, G. Y., Chen, Y. F., Chan, M. H., Gau, C. S. and Weng, S. M. (2018), “Stem cell therapy on skin: Mechanisms, recent advances and drug reviewing issues”, Journal of Food and Drug Analysis, Vol. 26 No. 1, pp. 14-20.
da Fonseca Ferreira, A. and Gomes, D. A. (2018), “Stem Cell Extracellular Vesicles in Skin Repair”, Bioengineering, Vol. 6 No. 1, pp. 4.
de Oliveira Gonzalez, A. C., Costa, T. F., de Araújo Andrade, Z. and Medrado, A. R. A. P. (2016), “Wound healing - A literature review”, Anais Brasileiros de Dermatologia, Vol. 91 No. 5, pp. 614-20.
Fry, C. S., Kirby, T. J., Kosmac, K., McCarthy, J. J. and Peterson, C. A. (2017), “Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy”, Cell Stem Cell, Vol. 20 No. 1, pp. 56-69.
Ghareeb, A. E., Lako, M. and Steel, D. H. (2020), “Coculture techniques for modeling retinal development and disease, and enabling regenerative medicine”, Stem Cells Translational Medicine, Vol. 9 No. 12, pp. 1531-48.
Ha, D. H., Kim, H. K., Lee, J., Kwon, H. H., Park, G. H., Yang, S. H., Jung, J. Y., Choi, H., Lee, J. H., Sung, S., Yi, Y. W. and Cho, B. S. (2020), “Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration”, Cells, Vol. 9 No. 5, pp. 1157.
Hesketh, M., Sahin, K. B., West, Z. E. and Murray, R. Z. (2017), “Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing”, International Journal of Molecular Sciences, Vol. 18 No. 7, pp. 1545.
He, X., Dong, Z., Cao, Y., Wang, H., Liu, S., Liao, L., Jin, Y., Yuan, L. and Li, B. (2019), “MSC-Derived Exosome Promotes M2 Polarization and Enhances Cutaneous Wound Healing”, Stem Cells International, Vol. 2019.
Jarrige, M., Frank, E., Herardot, E., Martineau, S., Darle, A., Benabides, M., Domingues, S., Chose, O., Habeler, W., Lorant, J., Baldeschi, C., Martinat, C., Monville, C., Morizur, L. and M’Barek, K. B. (2021), “The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles”, Cells, Vol. 10 No. 2, pp. 240.
Kervadec, A., Bellamy, V., Harane, N. E., Arakélian, L., Vanneaux, V., Cacciapuoti, I., Nemetalla, H., Périer, M. C., Toeg, H. D., Richart, A., Lemitre, M., Yin, M., Loyer, X., Larghero, J., Hagège, A., Ruel, M., Boulanger, C. M., Silvestre, J. S., Menasché, P. and Renault, N. K. E. (2016), “Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure”, Journal of Heart and Lung Transplantation, Vol. 35 No. 6, pp. 795-807.
Kharraz, Y., Guerra, J., Pessina, P., Serrano, A. L. and Muñoz-Cánoves, P. (2014), “Understanding the process of fibrosis in Duchenne muscular dystrophy”, BioMed Research International, Vol. 2014.
Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S. K., Choo, A., Chen, T. S., Salto-Tellez, M., Timmers, L., Lee, C. N., oakley, R. M. E., Pasterkamps, G., de Kleijn, D. P. V., Lim, S. K. (2010), “Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury”, Stem Cell Research, Vol. 4 No. 3, pp. 214-22.
Liu, L., Yu, Y., Hou, Y., Chai, J., Duan, H., Chu, W., Zhang, H., Hu, Q. and Du, J. (2014), “Human umbilical cord
mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats”, PloS One, Vol. 9 No. 2.
Liu, Y., Chen, S. J., Li, S. Y., Qu, L. H., Meng, X. H., Wang, Y., Xu, H. W., Liang, Z. Q. and Yin, Z. Q. (2017), “Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients”, Stem Cell Research & Therapy, Vol. 8 No. 1, pp. 209.
Luo, J., Baranov, P., Patel, S., Ouyang, H., Quach, J., Wu, F., Qiu, A., Luo, H., Hicks, C., Zeng, J., Zhu, J., Lu, J., Sfeir, N., Wen, C., Zhang, M., Reade, V., Patel, S., Sinden, J., Sun, X., Shaw, P., Young, M. and Zhang, K. (2014), “Human retinal progenitor cell transplantation preserves vision”, Journal of Biological Chemistry, Vol. 289 No. 10, pp. 6362-71.
M’Barek, K. B. and Monville, C. (2019), “Cell Therapy for Retinal Dystrophies: From Cell Suspension Formulation to Complex Retinal Tissue Bioengineering”, Stem Cells International, Vol. 2019.
Morizur, L., Herardot, E., Monville, C. and M’Barek, K. B. (2020), “Human pluripotent stem cells: A toolbox to understand and treat retinal degeneration”, Molecular and Cellular Neurosciences, Vol. 107.
Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N. and Yamanaka, S. (2008), “Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts”, Nature Biotechnology, Vol. 26 No. 1, pp. 101-6.
Peng, B., Xiao, J., Wang, K., So, K., Tipoe, G. L. and Lin, B. (2014), “Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa”, Journal of Neuroscience, Vol. 34 No. 24, pp. 8139-50.
Qazi, T. H., Duda, G. N., Ort, M. J., Perka, C., Geissler, S. and Winkler, T. (2019), “Cell therapy to improve regeneration of skeletal muscle injuries”, Journal of Cachexia, Sarcopenia and Muscle, Vol. 10 No. 3, pp. 501-16.
Sun, B. K., Siprashvili, Z. and Khavari, P. A. (2014), “Advances in skin grafting and treatment of cutaneous wounds”, Science, Vol. 346 No. 6212, pp. 941-5.
Sze, S. K., de Kleijn, D. P. V., Lai, R. C., Tan, E. K. W., Zhao, H., Yeo, K. S., Low, T. Y., Lian, Q., Lee, C. N., Mitchell, W., Oakley, M. R. E. and Lim, S. K. (2007), “Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells”, Molecular & Cellular Proteomics, Vol. 6 No. 10, pp. 1680-9.
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007), “Induction of pluripotent stem cells from adult human fibroblasts by defined factors”, Cell, Vol. 131 No. 5, pp. 861-72.
Ti, D., Hao, H., Tong, C., Liu, J., Dong, L., Zheng, J., Zhao, Y., Liu, H., Fu, X. and Han, W. (2015), “LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b”, Journal of Translational Medicine, Vol. 13, pp. 308.
Timmers, L., Lim, S. K., Hoefer, I. E., Arslan, F., Lai, R. C., van Oorschot, A. A. M., Goumans, M. J., Strijder, C., Sze, S. K., Choo, A., Piek, J. J., Doevendans, P. A., Pasterkamp, G. and de Kleijn, D. P. V. (2011), “Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction”, Stem Cell Research, Vol. 6 No. 3, pp. 206-14.
Wang, L., Hu, L., Zhou, X., Xiong, Z., Zhang, C., Shehada, H. M. A., Hu, B., Song, J. and Chen, L. (2017), “Exosomes secreted
by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling”, Scientific Reports, Vol. 7 No. 13321.
Wang, S., Girman, S., Lu, B., Bischoff, N., Holmes, T., Shearer, R., Wright, L. S., Svendsen, C. N., Gamm, D. M. and Lund, R. D. (2008), “Long-term vision rescue by human neural progenitors in a rat model of photoreceptor degeneration”, Investigative Ophtthalmology & Visual Science, Vol. 49 No. 7, pp. 3201-6.
Wiklander, O. P. B., Brennan, M. A., Lötvall, J., Breakefield, X. O. and Andaloussi, S. E. (2019), “Advances in therapeutic applications of extracellular vesicles”, Science Translational Medicine, Vol. 11 No. 492.
Copyright (c) 2024 Fitria, Muslimah, Zulnandar

This work is licensed under a Creative Commons Attribution 4.0 International License.
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without ristrictions.
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution (CC BY).