FUNCTIONAL ROLE OF VIMENTIN'S CYSTEINE IN XIST-MEDIATED EMT INHIBITION IN BREAST CANCER
Downloads
Breast cancer is the most commonly diagnosed malignancy among women worldwide and a leading cause of cancer-related mortality, primarily due to its high metastatic potential. One mechanism underlying metastasis is the epithelial-to-mesenchymal transition (EMT), which enhances cancer cell mobility, invasiveness, and resistance to treatment. Vimentin, a type III intermediate filament protein, is a hallmark of EMT and plays a structural and regulatory role in cytoskeletal organization and cellular stress responses. Recent studies have highlighted the importance of a single cysteine residue at position 328 (C328) in vimentin, which functions as a redox-sensitive site influencing filament dynamics. However, the role of C328 in cancer progression remained largely unexplored. This literature review investigates the effect of a single amino acid substitution—C328 to serine (C328S)—on breast cancer cell behavior, focusing on findings published between 2020 and 2025, sourced from PubMed and Google Scholar. Evidence from MCF-7 breast cancer cell models reveals that expression of C328S-VIM induces morphological changes, cytoskeletal disorganization, and increased proliferation, migration, and invasion. Notably, C328S-VIM upregulates the long non-coding RNA XIST, which promotes EMT, estrogen independence, and stem-like properties. These findings indicate that the native C328 residue serves a tumor-suppressive function, partly through modulation of XIST activity. Overall, this review presents a novel insight into how a single amino acid mutation in vimentin can reprogram breast cancer cells toward a more aggressive and stem-like phenotype. The study highlights C328 as a potential therapeutic target and broadens our understanding of the molecular mechanisms driving breast cancer progression.
Arrindell, J. and Desnues, B. (2023), “Vimentin: from a cytoskeletal protein to a critical modulator of immune response and a target for infection”, Frontiers in Immunology, Vol. 14.
dos Santos, G., Rogel, M. R., Baker, M. A., Troken, J. R., Urich, D., Morales-Nebreda, L., Sennello, J. A., Kutuzov, M. A., Sitikov, A., Davis, J. M., Lam, A. P., Cheresh, P., Kamp, D., Shumaker, D. K., Budinger, G. R. S. and Ridge, K. M. (2015), “Vimentin regulates activation of the NLRP3 inflammasome”, Nature Communications, Vol. 6 No. 6574.
Gonz´ alez-Jim´ enez, P., Duarte, S., Martínez, A. E., Navarro-Carrasco, E., Lalioti, V., Pajares, M. A. and P´ erez-Sala, D. (2023), “Vimentin single cysteine residue acts as a tunable sensor for network organization and as a key for actin remodeling in response to oxidants and electrophiles”, Redox Biology, Vol. 64, pp. 102756.
Kaus-Drobek, M., M€ ucke, N., Szczepanowski, R. H., Wedig, T., Czarnocki-Cieciura, M., Polakowska, M., Herrmann, H., Wysłouch-Cieszynska, A. and Dadlez, M. (2020), “Vimentin S-glutathionylation at Cys328 inhibits filament elongation and induces severing of mature filaments in vitro”, The FEBS Journal, Vol. 287 No. 24, pp. 5304-22.
Kuburich, N. A., den Hollander, P., Castaneda, M., Pietila, M., Tang, X., Batra, H., Martı´nez-Pen˜a, F., Visal, T. H., Zhou, T., Demestichas, B. R., Dontula, R V., Liu, J. Y., Maddela, J. J., Padmanabhan, R. S., Phi, L. T. H., Rosolen, M. J., Sabapathy, T., Kumar, D., Giancotti, F. G., Lairson, L. L., Raso, M. G., Soundararajan, R. and Mani, S. A. (2023), “Stabilizing vimentin phosphorylation inhibits stem-like cell properties and metastasis of hybrid epithelial/mesenchymal carcinomas”, Cell Reports, Vol. 42 No. 12.
Liu, C. Y., Lin, H. H., Tang, M. J. and Wang, Y. K. (2015), “Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation”, Oncotarget, Vol. 6 No. 18, pp. 15966-83.
Ma, Y., Zhu, Y., Shang, l., Qiu, Y., Shen, N., Wang, J., Adam, T., Wei, W., Song, Q., Li, J., Wicha, M. S. and Luo, M. (2023), “LncRNA XIST regulates breast cancer stem cells by activating proinflammatory IL-6/STAT3 signaling”, Oncogene, Vol. 42 No. 18, pp. 1419-37.
Mónico, A., Guzmán-Caldentey, J., Pajares, M. A., Martín-Santamaría, S. and Pérez-Sala, D. (2021), “Molecular Insight into the Regulation of Vimentin by Cysteine Modifications and Zinc Binding”, Antioxidants, Vol. 10 No. 7, pp. 1039.
Pajares, M. A. and Pérez-Sala, D. (2024), “Type III intermediate filaments in redox interplay: key role of the conserved cysteine residue”, Biochemical Society Transactions, Vol. 52 No. 2, pp. 849-60.
Patteson, A. E., Vahabikashi, A., Pogoda, K., Adam, S. A., Mandal, K., Kittisopikul, M., Sivagurunathan, S., Goldman, A., Goldman, R. D. and Janmey, P. A. (2019), “Vimentin protects cells against nuclear rupture and DNA damage during migration”, The Journal of Cell Biology, Vol. 218 No. 12, pp. 4079-92.
Pe ´rez-Sala, D., Oeste, C. L., Martı´nez, A. E., Carrasco, M. J., Garzo´n, B. and Can˜ada, F. J. (2015), “Vimentin filament organization and stress sensing depend on its single cysteine residue and zinc binding”, Nature Communications, Vol. 6, pp. 7287.
Pradeau-Phélut, L. and Etienne-Manneville, S. (2024), “Cytoskeletal crosstalk: A focus on intermediate filaments”, Current Opinion in Cell Biology, Vol. 87.
Sivagurunathan, S., Vahabikashi, A., Yang, H., Zhang, J., Vazquez, K.,
Rajasundaram, D., Politanska, Y., Abdala-Valencia, H., Notbohm, J., Guo, M., Adam, S. A. and Goldman, R. D. (2022), “Expression of vimentin alters cell mechanics, cell-cell adhesion, and gene expression profiles suggesting the induction of a hybrid EMT in human mammary epithelial cells”, Frontiers in Cell and Developmental Biology, Vol. 10, pp. 929495.
Strouhalova, K., Pˇ rechová, M., Gandaloviˇ cová, A., Brábek, J., Gregor, M. and Rosel, D. (2020), “Vimentin Intermediate Filaments as Potential Target for Cancer Treatment”, Cancers, Vol. 12 No. 1, pp. 184.
Talbot, L. J., Bhattacharya, S. D. and Kuo, P. C. (2012), “Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies”, International Journal of Biochemistry and Molecular Biology, Vol. 3 No. 2, pp. 117-36.
Usman, S., Yeudall, W. A., Teh, M. T., Ghloum, F., Tummala, H. and Waseem, A. (2025), “A single cysteine residue in vimentin regulates long non-coding RNA XIST to suppress epithelial-mesenchymal transition and stemness in breast cancer”, eLife.
Wilkinson, L. and Gathani, T. (2022), “Understanding breast cancer as a global health concern”, The British Journal of Radiology, Vol. 95 No. 1130.
Winter, M., Meignan, S., Völkel, P., Angrand, P. O., Chopin, V., Bidan, N., Toillon, R. A., Adriaenssens, E., Lagadec, C. and Bourhis, X. L. (2021), “Vimentin Promotes the Aggressiveness of Triple Negative Breast Cancer Cells Surviving Chemotherapeutic Treatment”, Cells, Vol. 10 No. 6, pp. 1504.
Yang, J., Qi, M., Fei, X., Wang, X. and Wang, K. (2021), “Long non-coding RNA XIST: a novel oncogene in multiple cancers”, Molecular Medicine, Vol. 27 No. 1, pp. 159.
Yeung, K. T. and Yang, J. (2017), “Epithelial–mesenchymal transition in tumor metastasis”, Molecular Oncology, Vol. 11 No. 28-39.
Zong, Y., Zhang, Y., Hou, D., Xu, J., Cui, F., Qin, Y. and Sun, X. (2020), “The lncRNA XIST promotes the progression of breast cancer by sponging miR-125b-5p to modulate NLRC5”, American Journal of Translational Research, Vol. 12 No. 7, pp. 3501-11.
Copyright (c) 2025 Jayanti, Melisa, Arnando, Mur’ah, Noviyanti

This work is licensed under a Creative Commons Attribution 4.0 International License.
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without ristrictions.
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution (CC BY).