FUNCTIONAL ROLE OF VIMENTIN'S CYSTEINE IN XIST-MEDIATED EMT INHIBITION IN BREAST CANCER

Breast cancer vimentin XIST intermediate filament protein EMT

Authors

May 30, 2025

Downloads

Breast cancer is the most commonly diagnosed malignancy among women worldwide and a leading cause of cancer-related mortality, primarily due to its high metastatic potential. One mechanism underlying metastasis is the epithelial-to-mesenchymal transition (EMT), which enhances cancer cell mobility, invasiveness, and resistance to treatment. Vimentin, a type III intermediate filament protein, is a hallmark of EMT and plays a structural and regulatory role in cytoskeletal organization and cellular stress responses. Recent studies have highlighted the importance of a single cysteine residue at position 328 (C328) in vimentin, which functions as a redox-sensitive site influencing filament dynamics. However, the role of C328 in cancer progression remained largely unexplored. This literature review investigates the effect of a single amino acid substitution—C328 to serine (C328S)—on breast cancer cell behavior, focusing on findings published between 2020 and 2025, sourced from PubMed and Google Scholar. Evidence from MCF-7 breast cancer cell models reveals that expression of C328S-VIM induces morphological changes, cytoskeletal disorganization, and increased proliferation, migration, and invasion. Notably, C328S-VIM upregulates the long non-coding RNA XIST, which promotes EMT, estrogen independence, and stem-like properties. These findings indicate that the native C328 residue serves a tumor-suppressive function, partly through modulation of XIST activity. Overall, this review presents a novel insight into how a single amino acid mutation in vimentin can reprogram breast cancer cells toward a more aggressive and stem-like phenotype. The study highlights C328 as a potential therapeutic target and broadens our understanding of the molecular mechanisms driving breast cancer progression.