DECODING YAP-DRIVEN MALIGNANT REPROGRAMMING IN ORAL EPITHELIAL STEM CELLS THROUGH SINGLE-CELL ANALYSIS
Downloads
Oral squamous cell carcinoma (OSCC), a major subtype of head and neck squamous cell carcinoma (HNSC), is characterized by high mortality rates and cellular heterogeneity that complicates early detection and treatment. Recent advances in cancer biology suggest that tumorigenesis involves reprogramming of epithelial progenitor cells into cancer stem-like cells (CSCs), driven by oncogenic signaling such as Yes-associated protein (YAP) activation. YAP, a key effector of the Hippo pathway, regulates transcriptional programs involved in cell proliferation, dedifferentiation, and inhibition of differentiation. However, the specific mechanisms by which YAP reprograms oral epithelial stem cells remain incompletely understood. This literature review systematically explores findings from studies published between 2020 and 2025 that investigate the role of YAP in malignant reprogramming, particularly through single-cell analysis approaches. Articles were sourced from PubMed and Google Scholar using defined inclusion criteria, focusing on original studies involving in vitro, in vivo, or bioinformatic models. The review highlights that YAP activation in oral epithelial cells induces stemness-associated genes (e.g., SOX2, NANOG, OCT4), represses differentiation pathways (Notch, p63), and promotes epithelial-mesenchymal transition (EMT) markers (ZEB1, SNAI2, VIM). Single-cell RNA sequencing (scRNA-seq) has revealed dynamic and hybrid cell states, supporting the view that YAP-driven transformation is gradual and reversible. YAP also shapes the tumor microenvironment by inducing cytokines that recruit tumor-supportive immune and stromal cells. Key YAP-regulated targets such as CTGF, AXL, and ITGA6 emerge as potential therapeutic entry points, as their inhibition reduces proliferation and stemness. These findings underscore YAP’s central role in oral carcinogenesis and its promise as a molecular target for early intervention and therapy.
Ahmad, U. S., Saravanan, K. and Wan, H. (2022), “The role of YAP in the control of the metastatic potential of oral cancer”, Oncology research, Vol. 29 No. 6, pp. 377-91.PARK
Amano, Y., Matsubara, D., Kihara, A., Yoshimoto, T.,. Fukushima, N., Nishino, H., Mori, Y. and Niki, T. (2024), “The significance of Hippo pathway protein expression in oral squamous cell carcinoma”, Frontiers in medicine, Vol. 11, pp. 1247625.
Athavale, D., Balch, C., Zhang, Y., Yao, X. and Song, S. (2024), “The role of Hippo/YAP1 in cancer-associated fibroblasts: Literature review and future perspectives”, Cancer Letters, Vol. 604, pp. 217244.
Byrd, K. M., Piehl, N. C., Patel, J. H., Huh, W. J., Sequeira, I., Lough, K. J., Wagner, B. L., Marangoni, P., Watt, F. M., Klein, O. D., Coffey, R. J. and Williams, S. E. (2019), “Heterogeneity within Stratified Epithelial Stem Cell Populations Maintains the Oral Mucosa in Response to Physiological Stress”, Cell Stem Cell, Vol. 25 No. 6, pp. 814-29.
Cabral, L. G. D. S., Martins, I. M., Paulo, E. P. D. A., Pomini, K. T., Poyet, J. L. and Maria, D. A. (2025), “Molecular Mechanisms in the Carcinogenesis of Oral Squamous Cell Carcinoma: A Literature Review”, Biomolecules, Vol. 15 No. 5, pp. 621.
Campbell, B. R., Chen, Z., Faden, D. L., Agrawal, N., Li, R. J., Hanna, G. J., Iyer, N. G., Boot, A., Rozen, S. G., Vettore, A. L., Panda, B., Krishnan, N. M., Pickering, C. R., Myers, J. N., Guo, X. and Kuhs, K. A. L. (2020), “The mutational landscape of early- and typical-onset oral tongue squamous cell carcinoma”, Cancer, Vol. 127 No. 4, pp. 544-53.
Cao, Y., Dong, H., Li, G., Wei, H., Xie, C., Tuo, Y., Chen, N. and Yu, D. (2022), “Temporal and spatial characteristics of tumor evolution in a mouse model of oral squamous cell carcinoma”, BMC Cancer, Vol. 22 No. 1, pp. 1209.
Caruso, J. A., Chen-Tanyolac, C. and Tlsty, T. D. (2024), “A hybrid epithelial-mesenchymal transition program enables basal epithelial cells to bypass stress-induced stasis and contributes to a metaplastic breast cancer progenitor state”, Breast cancer research, Vol. 26 No. 1, pp. 184.
Chakravarty, S., Ghosh, A., Das, C., Das, S., Patra, S., Maitra, A., Ghose, S. and Biswas, N. K. (2024), “Multi-regional genomic and transcriptomic characterization of a melanoma-associated oral cavity cancer provide evidence for CASP8 alteration-mediated field cancerization”, Human genomics, Vol. 18 No. 1, pp. 96.
Deng, H., Li, M., Zheng, R., Qiu, H., Yuan, T., Wang, W., Yang, Q., Long, Z. and Huang, X. (2021), “YAP Promotes Cell Proliferation and Epithelium-Derived Cytokine Expression via NF-κB Pathway in Nasal Polyps”, Journal of asthma and allergy, Vol. 14, pp. 839-50.
Dong, X., Meng, L., Liu, P., Ji, R., Su, X., Xin, Y. and Jiang, X. (2019), “YAP/TAZ: a promising target for squamous cell carcinoma treatment”, Cancer and management research, Vol. 11, pp. 6245-52.
Faraji, F., Ramirez, S. I., Clubb, L. M., Sato, K., Burghi, V., Hoang, T. S., Officer, A., Quiroz, P. Y. A., Galloway, W. M. G., Mikulski, Z., Medetgul-Ernar, K., Marangoni, P., Jones, K. B., Cao, Y., Molinolo, A. A., Kim, K., Sakaguchi, K., 3rd, J. A. C., Smith, Q., Goren, A., Klein, O. D., Tamayo, P. and Gutkind, J. S. (2025), “YAP-driven malignant reprogramming of oral epithelial stem cells at single cell resolution”, Nature communications, Vol. 16 No. 1.
Faraji, F., Ramirez, S. I., Clubb, L. M., Sato, K., Burghi, V., Hoang, T. S., Officer, A., Quiroz, P. Y. A., Galloway, W. M. G., Mikulski, Z., Medetgul-Ernar, K., Marangoni, P., Jones, K. B., Molinolo, A. A., Kim, K., Sakaguchi, K., III, J. A. C., Smith, Q., Goren, A., Klein, O. D., Tamayo, P. and Gutkind, J. S. (2024), “YAP-Driven Oral Epithelial Stem Cell Malignant Reprogramming at Single Cell Resolution”, Biorxiv.
Faraji, F., Ramirez, S. I., Clubb, L. M., Sato, K., Quiroz, P. Y. A., Galloway, W. M. G., Mikulski, Z., Hoang, T. S., Medetgul-Ernar, K., Marangoni, P., Jones, K. B., Officer, A., Molinolo, A. A., Kim, K., Sakaguchi, K., III, J. A. C., Smith, Q., Klein, O. D., Tamayo, P. and Gutkind, J. S. (2023), “Direct reprogramming of oral epithelial progenitor cells to cancer stem cells at single cell resolution in vivo”, Biorxiv.
Ghiso, E., Migliore, C., Ciciriello, V., Morando, E., Petrelli, A., Corso, S., Luca, E. D., Gatti, G., Volante, M. and Giordano, S. (2017), “YAP-Dependent AXL Overexpression Mediates Resistance to EGFR Inhibitors in NSCLC”, Neoplasia, Vol. 19 No. 12, pp. 1012-21.
Gokey, J. J., Snowball, J., Sridharan, A., Sudha, P., Kitzmiller, J. A., Xu, Y. and Whitsett, J. A. (2021), “YAP regulates alveolar epithelial cell differentiation and AGER via NFIB/KLF5/NKX2-1”, iScience, Vol. 24 No. 9, pp. 102967.
Khan, A., Pillay, M., Bipath, R., Msimang, M., Harry, J., Sibiya, A. L. and Msomi, N. (2025), “Evolution of testing for the diagnosis of human papillomavirus (HPV) status in head and neck squamous
cell carcinoma: Where from and where to?”, Oral Oncology, Vol. 162, pp. 107208.
Liu, H., Xie, L., Xing, X., Hou, L., Zhang, J. and Yang, L. (2025), “Single-cell pseudotime and intercellular communication analysis reveals heterogeneity and immune microenvironment in oral cancer”, Discover Oncology, Vol. 16 No. 151.
Liu, M., Zhang, Y., Yang, J., Zhan, H., Zhou, Z., Jiang, Y., Shi, X., Fan, X., Zhang, J., Luo, W., Fung, K. M. A., Xu, C., Bronze, M. S., Houchen, C. W. and Li, M. (2021), “Zinc-Dependent Regulation of ZEB1 and YAP1 Coactivation Promotes Epithelial-Mesenchymal Transition Plasticity and Metastasis in Pancreatic Cancer”, Gastroenterology, Vol. 160 No. 5, pp. 1771-83.
Ning, B., Tilston-Lunel, A. M., Simonetti, J., Hicks-Berthet, J., Matschulat, A., Pfefferkorn, R., Spira, A., Edwards, M., Mazzilli, S., Lenburg, M. E., Beane, J. E. and Varelas, X. (2023), “Convergence of YAP/TAZ, TEAD and TP63 activity is associated with bronchial premalignant severity and progression”, Journal of experimental & clinical cancer research, Vol. 42 No. 1, pp. 116.
Ortega, Á., Vera, I., Diaz, M. P., Navarro, C., Rojas, M., Torres, W., Parra, H., Salazar, J., Sanctis, J. B. D. and Bermúdez, V. (2021), “The YAP/TAZ Signaling Pathway in the Tumor Microenvironment and Carcinogenesis: Current Knowledge and Therapeutic Promises”, International journal of molecular sciences, Vol. 23 No. 1, pp. 430.
Pankratova, M. D., Riabinin, A. A., Butova, E. A., Selivanovskiy, A. V., Morgun, E. I., Ulianov, S. V., Vorotelyak, E. A., Kalabusheva, E. P. (2024), “YAP/TAZ Signalling Controls Epidermal Keratinocyte Fate”, International journal of molecular sciences, Vol. 25 No. 23, pp. 12903.
Park, H. W., Kim, Y. C., Yu, B., Moroishi, T., Mo, J. S., Plouffe, S. W., Meng, Z., Lin, K. C., Yu, F. X., Alexander, C. M., Wang, C. Y. and Guan, K. L. (2015), “Alternative Wnt Signaling Activates YAP/TAZ”, Cell, Vol. 162 No. 4, pp. 780-94.
Roy, M. E., Veilleux, C., Paquin, A., Gagnon, A. and Annabi, B. (2024), “Transcriptional regulation of CYR61 and CTGF by LM98: a synthetic YAP-TEAD inhibitor that targets in-vitro vasculogenic mimicry in glioblastoma cells”, Anticancer drugs, Vol. 35 No. 8, pp. 709-19.
Saikia, P. J., Pathak, L., Mitra, S. and Das, B. (2023), “The emerging role of oral microbiota in oral cancer initiation, progression and stemness”, Frontiers in immunology, Vol. 14, pp. 1198269.
Seubert, A. C., Krafft, M., Bopp, S., Helal, M., Bhandare, P., Wolf, E., Alemany, A., Riedel, A. and Kretzschmar, K. (2024), “Spatial transcriptomics reveals molecular cues underlying the site specificity of the adult mouse oral mucosa and its stem cell niches”, Stem Cell Reports, Vol. 19 No. 12, pp. 1706-19.
Shanmugam, G., Jeyaraj, G. and Sarkar, K. (2025), “Molecular mechanisms and diagnostic innovations in HPV-associated head and neck squamous cell carcinomas: Insights into integration, epigenetic modifications, and biomarker applications”, Oral Oncology Reports, Vol. 13, pp. 100710.
Song, H., Lou, C., Ma, J., Gong, Q., Tian, Z., You, Y., Ren, G., Guo, W., Wang, Y., He, K. and Xiao, M. (2022), “Single-Cell Transcriptome Analysis Reveals Changes of Tumor Immune Microenvironment in Oral Squamous Cell Carcinoma After Chemotherapy”, Frontiers in cell and
developmental biology, Vol. 10, pp. 914120.
Tang, Y., Zang, H., Wen, Q. and Fan, S. (2023), “AXL in cancer: a modulator of drug resistance and therapeutic target”, Journal of experimental & clinical cancer research, Vol. 42 No. 1, pp. 148.
Thong, T., Wang, Y., Brooks, M. D., Lee, C. T., Scott, C., Balzano, L., Wicha, M. S. and Colacino, J. A. (2020), “Hybrid Stem Cell States: Insights Into the Relationship Between Mammary Development and Breast Cancer Using Single-Cell Transcriptomics”, Frontiers in cell and developmental biology, Vol. 8, pp. 288.
Totaro, A., Castellan, M., Battilana, G., Zanconato, F., Azzolin, L., Giulitti, S., Cordenonsi, M. and Piccolo, S. (2017), “YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate”, Nature communications, Vol. 8, pp. 15206.
Wang, J., Cui, Z., Song, Q., Yang, K., Chen, Y. and Peng, S. (2024), “Integrating single-cell RNA-seq and bulk RNA-seq to construct a neutrophil prognostic model for predicting prognosis and immune response in oral squamous cell carcinoma”, Human Genomics, Vol. 18 No. 1, pp. 140.
Xu, Y., Li, W., Lin, S., Liu, B., Wu, P. and Li, L. (2023), “Fibroblast diversity and plasticity in the tumor microenvironment: roles in immunity and relevant therapies”, Cell communication and signaling, Vol. 21 No. 1, pp. 234.
Yan, W., Xiao, G. H., Wang, L. J., Zhou, Y., Yang, F. and Mou, K. H. (2025), “CAFs activated by YAP1 upregulate cancer matrix stiffness to mediate hepatocellular carcinoma progression”, Journal of translational medicine, Vol. 23 No. 1, pp. 450.
Zhan, Y., Sun, D., Gao, J., Gao, Q., Lv, Y., Du, T., Dong, Y., Wang, Y., Zhan, H., Li, J., Li, P., Du, L. and Wang, C. (2025), “Single-cell transcriptomics reveals intratumor heterogeneity and the potential roles of cancer stem cells and myCAFs in colorectal cancer liver metastasis and recurrence”, Cancer Letters, Vol. 612, pp. 217452.
Copyright (c) 2025 Indah Salsabila Febriana Putri, Harmin, Hanisa Aulia Maharani

This work is licensed under a Creative Commons Attribution 4.0 International License.
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without ristrictions.
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution (CC BY).