Gut-Brain Axis, Notch, and Brain Cancer: ‘The Rising Three’
Introduction:The gut-brain axis (GBA) enables reciprocal communication between the central nervous system and the enteric nervous system. A connection between the gut-brain axis, NOTCH, and brain cancer is an intricate subject that is worthy of learning more about. Brain cancer has a complex pathophysiology and structure in this context, thus getting from diagnosis to treatment is still difficult. The involvement of NOTCH in the signalling pathway may be relevant to both brain cancer and the gut-brain axis. Methods: This study is a systematic review conducted by using numerous search engines, including PubMed, ProQuest, and the Cambridge Core from July until August 2023. The collected materials were then filtered and investigated further. Result: The existence of the gut brain axis is a highly intriguing topic to explore extensively. The intricacy of NOTCH and the gut-brain axis may show a link behind brain cancer pathogenesis. The literature review conducted yielded a total of two publications, which were subsequently subjected to a more comprehensive analysis. Discussion: The gut-brain axis (GBA) refers to a bidirectional communication network that exists between the central nervous system and the enteric nervous system, which is responsible for regulating the functions of the gastrointestinal tract. The identification of the NOTCH signalling pathway is an indicative of its involvement in the development of brain tumours. Conclusion: All three of the excellent points on the gut-brain axis, NOTCH, and brain cancer are all linked. NOTCH's position as a signalling channel is linked to brain cancer, as is the gut-brain axis, which is also linked to brain cancer. Furthermore, this role relationship has the potential to generate something novel in terms of diagnosis and therapy, which can then be researched further.
Alcantara Llaguno, S. et al. (2019) ‘Cell-of-origin susceptibility to glioblastoma formation declines with neural lineage restriction', Nature Neuroscience, 22(4), pp. 545–555. Available at: https://doi.org/10.1038/s41593-018-0333-8.
Almutairi, M.M.A. et al. (2016) ‘Factors controlling permeability of the blood–brain barrier', Cellular and Molecular Life Sciences, 73(1), pp. 57–77. Available at: https://doi.org/10.1007/s00018-015-2050-8.
Andersen, J. et al. (2014) ‘A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells.', 83, pp. 1085–1097.
Androutsellis-Theotokis, A. et al. (2006) ‘Notch signalling regulates stem cell numbers in vitro and in vivo', Nature, 442(7104), pp. 823–826. Available at: https://doi.org/10.1038/nature04940.
Bai, H. et al. (2016) ‘Integrated genomic characterization of IDH1-mutant glioma malignant progression', Nature Genetics, 48(1), pp. 59–66. Available at: https://doi.org/10.1038/ng.3457.
Benner, E.J. et al. (2013) ‘Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4', Nature, 497(7449), pp. 369–373. Available at: https://doi.org/10.1038/nature12069.
Berrill, J.W. et al. (2013) ‘An observational study of cognitive function in patients with irritable bowel syndrome and inflammatory bowel disease', Neurogastroenterology & Motility, 25(11), p. 918. Available at: https://doi.org/10.1111/nmo.12219.
Blomfield, I.M. et al. (2019) ‘Id4 promotes the elimination of the pro-activation factor Ascl1 to maintain quiescence of adult hippocampal stem cells', eLife, 8, p. e48561. Available at: https://doi.org/10.7554/eLife.48561.
Bond, A.M., Ming, G. and Song, H. (2015) ‘Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later', Cell Stem Cell, 17(4), pp. 385–395. Available at: https://doi.org/10.1016/j.stem.2015.09.003.
Bush, N.A.O. and Butowski, N. (2017) ‘The Effect of Molecular Diagnostics on the Treatment of Glioma', Current Oncology Reports, 19(4), p. 26. Available at: https://doi.org/10.1007/s11912-017-0585-6.
Carabotti, M. et al. (2015) ‘The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems', Annals of Gastroenterology [Preprint].
Crouzet, L. et al. (2013) ‘The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota', Neurogastroenterology & Motility, 25(4). Available at: https://doi.org/10.1111/nmo.12103.
Cryan, J.F. et al. (2019) ‘The Microbiota-Gut-Brain Axis', Physiological Reviews, 99(4), pp. 1877–2013. Available at: https://doi.org/10.1152/physrev.00018.2018.
D'Alessandro, G. et al. (2020) ‘Gut microbiota alterations affect glioma growth and innate immune cells involved in tumor immunosurveillance in mice', European Journal of Immunology, 50(5), pp. 705–711. Available at: https://doi.org/10.1002/eji.201948354.
De, I. et al. (2016) ‘CSF1 Overexpression Promotes High-Grade Glioma Formation without Impacting the Polarization Status of Glioma-Associated Microglia and Macrophages', Cancer Research, 76(9), pp. 2552–2560. Available at: https://doi.org/10.1158/0008-5472.CAN-15-2386.
Dissing-Olesen, L., Hong, S. and Stevens, B. (2015) ‘New Brain Lymphatic Vessels Drain Old Concepts', EBioMedicine, 2(8), pp. 776–777. Available at: https://doi.org/10.1016/j.ebiom.2015.08.019.
Dono, A. et al. (2022) ‘Glioma and the gut–brain axis: opportunities and future perspectives', Neuro-Oncology Advances, 4(1), p. vdac054. Available at: https://doi.org/10.1093/noajnl/vdac054.
DuPont, H.L. (2014) ‘Review article: evidence for the role of gut microbiota in irritable bowel syndrome and its potential influence on therapeutic targets', Alimentary Pharmacology & Therapeutics, 39(10), pp. 1033–1042. Available at: https://doi.org/10.1111/apt.12728.
Engler, A. et al. (2018) ‘Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular-Subventricular Zone', Cell Reports, 22(4), pp. 992–1002. Available at: https://doi.org/10.1016/j.celrep.2017.12.094.
Erny, D. et al. (2015) ‘Host microbiota constantly control maturation and function of microglia in the CNS', Nature Neuroscience, 18(7), pp. 965–977. Available at: https://doi.org/10.1038/nn.4030.
Eyler, C.E. et al. (2020) ‘Single-cell lineage analysis reveals genetic and epigenetic interplay in glioblastoma drug resistance', Genome Biology, 21(1), p. 174. Available at: https://doi.org/10.1186/s13059-020-02085-1.
Foster, J.A. and McVey Neufeld, K.-A. (2013) ‘Gut–brain axis: how the microbiome influences anxiety and depression', Trends in Neurosciences, 36(5), pp. 305–312. Available at: https://doi.org/10.1016/j.tins.2013.01.005.
Gage, F.H. and Temple, S. (2013) ‘Neural Stem Cells: Generating and Regenerating the Brain', Neuron, 80(3), pp. 588–601. Available at: https://doi.org/10.1016/j.neuron.2013.10.037.
Galví£o, R.P. and Zong, H. (2013) ‘Inflammation and Gliomagenesis: Bi-Directional Communication at Early and Late Stages of Tumor Progression', Current Pathobiology Reports, 1(1), pp. 19–28. Available at: https://doi.org/10.1007/s40139-012-0006-3.
Gershon, M.D. and Margolis, K.G. (2021) ‘The gut, its microbiome, and the brain: connections and communications', Journal of Clinical Investigation, 131(18), p. e143768. Available at: https://doi.org/10.1172/JCI143768.
Giachino, C. and Taylor, V. (2014) ‘Notching up neural stem cell homogeneity in homeostasis and disease', Frontiers in Neuroscience, 8. Available at: https://doi.org/10.3389/fnins.2014.00032.
Gieryng, A. et al. (2017) ‘Immune microenvironment of gliomas', Laboratory Investigation, 97(5), pp. 498–518. Available at: https://doi.org/10.1038/labinvest.2017.19.
Hambardzumyan, D., Gutmann, D.H. and Kettenmann, H. (2016) ‘The role of microglia and macrophages in glioma maintenance and progression', Nature Neuroscience, 19(1), pp. 20–27. Available at: https://doi.org/10.1038/nn.4185.
Hammond, T.R. et al. (2014) ‘Astrocyte-Derived Endothelin-1 Inhibits Remyelination through Notch Activation', Neuron, 81(3), pp. 588–602. Available at: https://doi.org/10.1016/j.neuron.2013.11.015.
Imayoshi, I. et al. (2013) ‘Oscillatory Control of Factors Determining Multipotency and Fate in Mouse Neural Progenitors', Science, 342(6163), pp. 1203–1208. Available at: https://doi.org/10.1126/science.1242366.
Katsushima, K. et al. (2016) ‘Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment', Nature Communications, 7(1), p. 13616. Available at: https://doi.org/10.1038/ncomms13616.
Kawai, H. et al. (2017) ‘Area-Specific Regulation of Quiescent Neural Stem Cells by Notch3 in the Adult Mouse Subependymal Zone', The Journal of Neuroscience, 37(49), pp. 11867–11880. Available at: https://doi.org/10.1523/JNEUROSCI.0001-17.2017.
Kennedy, P.J. (2014) ‘Irritable bowel syndrome: A microbiome-gut-brain axis disorder?', World Journal of Gastroenterology, 20(39), p. 14105. Available at: https://doi.org/10.3748/wjg.v20.i39.14105.
Lathia, J.D. et al. (2015) ‘Cancer stem cells in glioblastoma'.
Lee, Joo Ho et al. (2018) ‘Human glioblastoma arises from subventricular zone cells with low-level driver mutations', Nature, 560(7717), pp. 243–247. Available at: https://doi.org/10.1038/s41586-018-0389-3.
Liau, B.B. et al. (2017) ‘Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance', Cell Stem Cell, 20(2), pp. 233-246.e7. Available at: https://doi.org/10.1016/j.stem.2016.11.003.
Lim, K.J. et al. (2015) ‘Lateral inhibition of Notch signaling in neoplastic cells', Oncotarget, 6(3), pp. 1666–1677. Available at: https://doi.org/10.18632/oncotarget.2762.
Lisi, L. et al. (2017) ‘Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma', Neuroscience Letters, 645, pp. 106–112. Available at: https://doi.org/10.1016/j.neulet.2017.02.076.
Louis, D.N. et al. (2016) ‘The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary', Acta Neuropathologica, 131(6), pp. 803–820. Available at: https://doi.org/10.1007/s00401-016-1545-1.
Magnusson, J.P. et al. (2014) ‘A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse', Science, 346(6206), pp. 237–241. Available at: https://doi.org/10.1126/science.346.6206.237.
Man, J. et al. (2018) ‘Hypoxic Induction of Vasorin Regulates Notch1 Turnover to Maintain Glioma Stem-like Cells', Cell Stem Cell, 22(1), pp. 104-118.e6. Available at: https://doi.org/10.1016/j.stem.2017.10.005.
Mangani, D., Weller, M. and Roth, P. (2017) ‘The network of immunosuppressive pathways in glioblastoma', Biochemical Pharmacology, 130, pp. 1–9. Available at: https://doi.org/10.1016/j.bcp.2016.12.011.
Mayer, E.A., Padua, D. and Tillisch, K. (2014) ‘Altered brain"gut axis in autism: Comorbidity or causative mechanisms?', BioEssays, 36(10), pp. 933–939. Available at: https://doi.org/10.1002/bies.201400075.
Mehrian-Shai, R. et al. (2019) ‘The Gut–Brain Axis, Paving the Way to Brain Cancer', Trends in Cancer, 5(4), pp. 200–207. Available at: https://doi.org/10.1016/j.trecan.2019.02.008.
Meyer, C., Martin-Blondel, G. and Liblau, R.S. (2017) ‘Endothelial cells and lymphatics at the interface between the immune and central nervous systems: implications for multiple sclerosis', Current Opinion in Neurology, 30(3), pp. 222–230. Available at: https://doi.org/10.1097/WCO.0000000000000454.
Mizutani, K. et al. (2007) ‘Differential Notch signalling distinguishes neural stem cells from intermediate progenitors', Nature, 449(7160), pp. 351–355. Available at: https://doi.org/10.1038/nature06090.
Morais, L.H., Schreiber, H.L. and Mazmanian, S.K. (2021) ‘The gut microbiota–brain axis in behaviour and brain disorders', Nature Reviews Microbiology, 19(4), pp. 241–255. Available at: https://doi.org/10.1038/s41579-020-00460-0.
Naseribafrouei, A. et al. (2014) ‘Correlation between the human fecal microbiota and depression', Neurogastroenterology & Motility, 26(8), pp. 1155–1162. Available at: https://doi.org/10.1111/nmo.12378.
Natarajan, S. et al. (2013) ‘Notch1 -Induced Brain Tumor Models the Sonic Hedgehog Subgroup of Human Medulloblastoma', Cancer Research, 73(17), pp. 5381–5390. Available at: https://doi.org/10.1158/0008-5472.CAN-13-0033.
Navarro Negredo, P., Yeo, R.W. and Brunet, A. (2020) ‘Aging and Rejuvenation of Neural Stem Cells and Their Niches', Cell Stem Cell, 27(2), pp. 202–223. Available at: https://doi.org/10.1016/j.stem.2020.07.002.
Nduom, E.K., Weller, M. and Heimberger, A.B. (2015) ‘Immunosuppressive mechanisms in glioblastoma: Fig. 1.', Neuro-Oncology, 17(suppl 7), pp. vii9–vii14. Available at: https://doi.org/10.1093/neuonc/nov151.
Needham, B., Kaddurah-Daouk, R. and Mazmanian, S. (2020) ‘Gut microbial molecules in behavioural and neurodegenerative conditions.', 21, pp. 717–731. Available at: https://doi.org/10.1038/s41583-020-00381-0.
Noch, E.K., Ramakrishna, R. and Magge, R. (2018) ‘Challenges in the Treatment of Glioblastoma: Multisystem Mechanisms of Therapeutic Resistance', World Neurosurgery, 116, pp. 505–517. Available at: https://doi.org/10.1016/j.wneu.2018.04.022.
Ooi, Y.C. et al. (2014) ‘The role of regulatory T-cells in glioma immunology', Clinical Neurology and Neurosurgery, 119, pp. 125–132. Available at: https://doi.org/10.1016/j.clineuro.2013.12.004.
Ostrom, Q.T. et al. (2014) ‘The epidemiology of glioma in adults: a "state of the science” review', Neuro-Oncology, 16(7), pp. 896–913. Available at: https://doi.org/10.1093/neuonc/nou087.
Ottone, C. et al. (2014) ‘Direct cell–cell contact with the vascular niche maintains quiescent neural stem cells', Nature Cell Biology, 16(11), pp. 1045–1056. Available at: https://doi.org/10.1038/ncb3045.
Park, N.I. et al. (2017) ‘ASCL1 Reorganizes Chromatin to Direct Neuronal Fate and Suppress Tumorigenicity of Glioblastoma Stem Cells', Cell Stem Cell, 21(2), pp. 209-224.e7. Available at: https://doi.org/10.1016/j.stem.2017.06.004.
Parmigiani, E., Taylor, V. and Giachino, C. (2017) ‘Tenascin-C induces expression of the Notch ligand Jagged1 to promote glioma growth', Translational Cancer Research, 6(S6), pp. S1057–S1060. Available at: https://doi.org/10.21037/tcr.2017.07.21.
Patrizz, A. et al. (2020) ‘Glioma and temozolomide induced alterations in gut microbiome', Scientific Reports, 10(1), p. 21002. Available at: https://doi.org/10.1038/s41598-020-77919-w.
Poli, A. et al. (2013) ‘NK Cells in Central Nervous System Disorders', The Journal of Immunology, 190(11), pp. 5355–5362. Available at: https://doi.org/10.4049/jimmunol.1203401.
Prosniak, M. et al. (2013) ‘Glioma Grade Is Associated with the Accumulation and Activity of Cells Bearing M2 Monocyte Markers', Clinical Cancer Research, 19(14), pp. 3776–3786. Available at: https://doi.org/10.1158/1078-0432.CCR-12-1940.
Quigley, E.M.M. (2014) ‘Small intestinal bacterial overgrowth: what it is and what it is not', Current Opinion in Gastroenterology, 30(2), pp. 141–146. Available at: https://doi.org/10.1097/MOG.0000000000000040.
Rajakulendran, N. et al. (2019) ‘Wnt and Notch signaling govern self-renewal and differentiation in a subset of human glioblastoma stem cells', Genes & Development, 33(9–10), pp. 498–510. Available at: https://doi.org/10.1101/gad.321968.118.
Raper, D., Louveau, A. and Kipnis, J. (2016) ‘How Do Meningeal Lymphatic Vessels Drain the CNS?', Trends in Neurosciences, 39(9), pp. 581–586. Available at: https://doi.org/10.1016/j.tins.2016.07.001.
Reifenberger, G. et al. (2017) ‘Advances in the molecular genetics of gliomas ” implications for classification and therapy', Nature Reviews Clinical Oncology, 14(7), pp. 434–452. Available at: https://doi.org/10.1038/nrclinonc.2016.204.
Reynoso-García, J. et al. (2022) ‘Mycobiome-Host Coevolution? The Mycobiome of Ancestral Human Populations Seems to Be Different and Less Diverse Than Those of Extant Native and Urban-Industrialized Populations', Microorganisms, 10(2), p. 459. Available at: https://doi.org/10.3390/microorganisms10020459.
Rini, B. (2014) ‘Future Approaches in Immunotherapy', Seminars in Oncology, 41, pp. S30–S40. Available at: https://doi.org/10.1053/j.seminoncol.2014.09.005.
Rusu, P. et al. (2019) ‘GPD1 Specifically Marks Dormant Glioma Stem Cells with a Distinct Metabolic Profile', Cell Stem Cell, 25(2), pp. 241-257.e8. Available at: https://doi.org/10.1016/j.stem.2019.06.004.
Sarkar, A. et al. (2016) ‘Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals.', 39(11), pp. 763–781. Available at: https://doi.org/PMID 27793434; PMCID: PMC5102282.
Sharon, G. et al. (2014) ‘Specialized Metabolites from the Microbiome in Health and Disease', Cell Metabolism, 20(5), pp. 719–730. Available at: https://doi.org/10.1016/j.cmet.2014.10.016.
Siegel, R.L., Miller, K.D. and Jemal, A. (2016) ‘Cancer statistics, 2016: Cancer Statistics, 2016', CA: A Cancer Journal for Clinicians, 66(1), pp. 7–30. Available at: https://doi.org/10.3322/caac.21332.
Silver, D.J. et al. (2016) ‘The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities', Neuro-Oncology, 18(2), pp. 153–159. Available at: https://doi.org/10.1093/neuonc/nov157.
Simrén, M. et al. (2013) ‘Intestinal microbiota in functional bowel disorders: a Rome foundation report', Gut, 62(1), pp. 159–176. Available at: https://doi.org/10.1136/gutjnl-2012-302167.
Sueda, R. et al. (2019) ‘High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain', Genes & Development, 33(9–10), pp. 511–523. Available at: https://doi.org/10.1101/gad.323196.118.
Sun, L. et al. (2022) ‘Lead Exposure Induced Neural Stem Cells Death via Notch Signaling Pathway and Gut-Brain Axis', Oxidative Medicine and Cellular Longevity. Edited by M.S. Ali Sheikh, 2022, pp. 1–12. Available at: https://doi.org/10.1155/2022/7676872.
Sun, M. et al. (2017) ‘Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases', Journal of Gastroenterology, 52(1), pp. 1–8. Available at: https://doi.org/10.1007/s00535-016-1242-9.
The Cancer Genome Atlas Research Network (2015) ‘Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas', New England Journal of Medicine, 372(26), pp. 2481–2498. Available at: https://doi.org/10.1056/NEJMoa1402121.
Touat, M. et al. (2017) ‘Glioblastoma targeted therapy: updated approaches from recent biological insights', Annals of Oncology, 28(7), pp. 1457–1472. Available at: https://doi.org/10.1093/annonc/mdx106.
Wang, J. et al. (2019) ‘Invasion of white matter tracts by glioma stem cells is regulated by a NOTCH1–SOX2 positive-feedback loop', Nature Neuroscience, 22(1), pp. 91–105. Available at: https://doi.org/10.1038/s41593-018-0285-z.
Watt, W.C., Cecil, D.L. and Disis, M.L. (2017) ‘Selection of epitopes from self-antigens for eliciting Th2 or Th1 activity in the treatment of autoimmune disease or cancer', Seminars in Immunopathology, 39(3), pp. 245–253. Available at: https://doi.org/10.1007/s00281-016-0596-7.
Wu, S.-Y. (2017) ‘The roles of microglia macrophages in tumor progression of brain cancer and metastatic disease', Frontiers in Bioscience, 22(10), pp. 1805–1829. Available at: https://doi.org/10.2741/4573.
Xie, Q. et al. (2016) ‘RBPJ maintains brain tumor–initiating cells through CDK9-mediated transcriptional elongation', Journal of Clinical Investigation, 126(7), pp. 2757–2772. Available at: https://doi.org/10.1172/JCI86114.
Zhang, C. et al. (2022) ‘Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies', Frontiers in Cellular and Infection Microbiology, 12, p. 1072341. Available at: https://doi.org/10.3389/fcimb.2022.1072341.
Zhang, R. et al. (2019) ‘Id4 Downstream of Notch2 Maintains Neural Stem Cell Quiescence in the Adult Hippocampus', Cell Reports, 28(6), pp. 1485-1498.e6. Available at: https://doi.org/10.1016/j.celrep.2019.07.014.
Copyright (c) 2024 Gembong Satria Mahardhika, Norina
This work is licensed under a Creative Commons Attribution 4.0 International License.
1. The journal allows the author(s) to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without restrictions.
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution 4.0 International License (CC-BY).