Correlation of CTR1, ERCC-1, and HSP70 expressions with cisplastin response in cervical cancer stage IIB

Brahmana Askandar, Suhatno Suhatno, Juliati Hood

Abstract views = 173 times | downloads = 204 times


Objectives: This study aimed to determine the resistance of cisplatin (chemotherapy drugs) at three point areas including expression of CTR1, ERCC1, and HSP70 in cervical cancer patients.

Materials and Methods: This research used a cross sectional approach. The population in this study were patients with stage IIB of cervical carcinoma. The study sample were patients with stage IIB of cervical carcinoma according to the FIGO classification, patients received cisplatin chemotherapy treatment (50 mg/m2 4 times), had good kidney and liver function. The independent variables in this study were the expression of CTR1, ERCC1, and HSP70 and the dependent variable of this study was the response to cisplatin therapy in cervical cancer. Primary data was obtained through MRI examination after the administration of cisplatin 50 mg/m2 every week. The parameters of this study included the expression of CTR1, ERCC1 and HSP70. Data obtained were analyzed using Wilcoxon rank test, Spearman test and categorical regression with a significance level of p <0.05.

Results: The treatment of cisplatin therapy in cervical cancer patients had no significant correlation between the expression of CTR1 and ERCC1, but in the expression of HSP70 there was a significant negative correlation which means that the higher the expression of HSP70, the worse the response of therapy.

Conclusion: This study showed that HSP70 expression can be used as an indicator in treatment of cisplatin therapy in cancer patients through MRI examination.


Chemotherapy; cisplatin; cervical cancer; MRI

Full Text:



Vinh-Hung, V., Bourgain, C., Vlastos, G., Cserni, G., De Ridder, M., Storme, G., et al. 2007. Prognostic value of histopathology and trends in cervical cancer: a SEER population study. BMC Cancer, 7, 164.

Jemal, A., Center, M. M., Desantis, C. & Ward, E. M. 2010. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev, 19, 1893-907.

Aziz, M. F. 2009. Gynecological cancer in Indonesia. J Gynecol Oncol, 20, 8-10.

Benedet, J. L., Bender, H., Jones, H., 3rd, Ngan, H. Y. & Pecorelli, S. 2000. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO Committee on Gynecologic Oncology. Int J Gynaecol Obstet, 70, 209-62.

Sugimori, H. & Iwasaka, T. 1997. Neoadjuvant chemotherapy for cancer of the uterine cervix. International Journal of Clinical Oncology, 2, 183-188.

Gonzalez-Martin, A., Gonzalez-Cortijo, L., Carballo, N., Garcia, J. F., Lapuente, F., Rojo, A., et al. 2008. The current role of neoadjuvant chemotherapy in the management of cervical carcinoma. Gynecol Oncol, 110, S36-40.

Shueng M.D, P.-W., Hsu M.D, W.-L., Jen M.D, P. D. Y.-M., Wu M.D, C.-J. & Liu M.D, H.-S. 1998. Neoadjuvant Chemotherapy Followed by Radiotherapy Should Not Be A Standard Approach for Locally Advanced Cervical Cancer. International Journal of Radiation Oncology*Biology*Physics, 40, 889-896.

Colombo, N. & Peiretti, M. 2010. Critical Review of Neoadjuvant Chemotherapy Followed by Surgery for Locally Advanced Cervical Cancer. International Journal of Gynecological Cancer, 20, S47-S48 10.1111/IGC.0b013e3181f967ed.

Giardina, G., Richiardi, G., Danese, S., Ottone, P., Ohlmeier, U. & Gargiulo, T. 1997. Weekly cisplatin as neoadjuvant chemotherapy in locally advanced cervical cancer: a well-tolerated alternative.

Gonzalez, V. M., Fuertes, M. A., Alonso, C. & Perez, J. M. 2001. Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol, 59, 657-63.

Kaufmann, S. H. & Earnshaw, W. C. 2000. Induction of apoptosis by cancer chemotherapy. Exp Cell Res, 256, 42-9.

Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicol Pathol, 35, 495-516.

Kaufmann, S. H., Lee, S. H., Meng, X. W., Loegering, D. A., Kottke, T. J., Henzing, A. J., et al. 2008. Apoptosis-associated caspase activation assays. Methods, 44, 262-72.

Chen, H. H. W., Yan, J.-J., Chen, W.-C., Kuo, M. T., Lai, Y.-H., Lai, W.-W., et al. 2012. Predictive and prognostic value of human copper transporter 1 (hCtr1) in patients with stage III non-small-cell lung cancer receiving first-line platinum-based doublet chemotherapy. Lung Cancer (Amsterdam, Netherlands), 75, 228-234.

Lee, H. W., Han, J. H., Kim, J. H., Lee, M. H., Jeong, S. H., Kang, S. Y., et al. 2008a. Expression of excision repair cross-complementation group 1 protein predicts poor outcome in patients with small cell lung cancer. Lung Cancer, 59, 95-104.

Kim, B. E., Nevitt, T. & Thiele, D. J. 2008. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol, 4, 176-85.

Jena, A., Oberoi, R., Rawal, S., Das, S. K. & Pandey, K. K. 2005. Parametrial invasion in carcinoma of cervix: role of MRI measured tumour volume. Br J Radiol, 78, 1075-7.

Eisenhauer, E. A., Therasse, P., Bogaerts, J., Schwartz, L. H., Sargent, D., Ford, R., et al. 2009. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 45, 228-47

Askandar, B. & Santoso, C. 2011. The effectiveness of neodjuvant chemotherapy in cervical cancer stage IIB. Gynecologic Oncology, 120, Supplement 1, S114.

He, L., Wu, L., Su, G., Wei, W., Liang, L., Han, L., et al. 2014. The efficacy of neoadjuvant chemotherapy in different histological types of cervical cancer. Gynecol Oncol, 134, 419-25.

Duenas-Gonzalez, A., Lopez-Graniel, C., Gonzalez-Enciso, A., Mohar, A., Rivera, L., Mota, A., et al. 2002. Concomitant chemoradiation versus neoadjuvant chemotherapy in locally advanced cervical carcinoma: results from two consecutive phase II studies. Ann Oncol, 13, 1212-9.

Rydzewska, L., Tierney, J., Vale, C. L. & Symonds, P. R. 2012. Neoadjuvant chemotherapy plus surgery versus surgery for cervical cancer. Cochrane Database Syst Rev, 12, Cd007406.

Omura, G. A., Blessing, J. A., Vaccarello, L., Berman, M. L., Clarke-Pearson, D. L., Mutch, D. G., et al. 1997. Randomized trial of cisplatin versus cisplatin plus mitolactol versus cisplatin plus ifosfamide in advanced squamous carcinoma of the cervix: a Gynecologic Oncology Group study. J Clin Oncol, 15, 165-71.

Moore, D. H., Blessing, J. A., Mcquellon, R. P., Thaler, H. T., Cella, D., Benda, J., et al. 2004. Phase III study of cisplatin with or without paclitaxel in stage IVB, recurrent, or persistent squamous cell carcinoma of the cervix: a gynecologic oncology group study. J Clin Oncol, 22, 3113-9.

Long, H. J., 3rd, Bundy, B. N., Grendys, E. C., Jr., Benda, J. A., Mcmeekin, D. S., Sorosky, J., et al. 2005. Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: a Gynecologic Oncology Group Study. J Clin Oncol, 23, 4626-33.

Ishida, S., Mccormick, F., Smith-Mccune, K. & Hanahan, D. 2010. Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell, 17, 574-83.

Kim, E. S., Tang, X., Peterson, D. R., Kilari, D., Chow, C. W., Fujimoto, J., et al. 2014. Copper transporter CTR1 expression and tissue platinum concentration in non-small cell lung cancer. Lung Cancer, 85, 88-93.

Safaei, R., Otani, S., Larson, B. J., Rasmussen, M. L. & Howell, S. B. 2008. Transport of cisplatin by the copper efflux transporter ATP7B. Mol Pharmacol, 73, 461-8.

Blair, B. G., Larson, C. A., Safaei, R. & Howell, S. B. 2009. Copper transporter 2 regulates the cellular accumulation and cytotoxicity of Cisplatin and Carboplatin. Clin Cancer Res, 15, 4312-21.

Hasegawa, K., Kato, R., Torii, Y., Ichikawa, R., Oe, S. & Udagawa, Y. 2011. The correlation between ERCC1 expression and clinical outcome in patients with FIGO stage I to stage II uterine cervical adenocarcinoma. Int J Gynecol Cancer, 21, 1479-85.

Park, J. S., Jeon, E. K., Chun, S. H., Won, H. S., Lee, A., Hur, S. Y., et al. 2011. ERCC1 (excision repair cross-complementation group 1) expression as a predictor for response of neoadjuvant chemotherapy for FIGO stage 2B uterine cervix cancer. Gynecol Oncol, 120, 275-9.

Bajpai, D., Banerjee, A., Pathak, S., Jain, S. K. & Singh, N. 2013. Decreased expression of DNA repair genes (XRCC1, ERCC1, ERCC2, and ERCC4) in squamous intraepithelial lesion and invasive squamous cell carcinoma of the cervix. Mol Cell Biochem, 377, 45-53.

Basu, A. & Krishnamurthy, S. 2010. Cellular responses to Cisplatin-induced DNA damage. J Nucleic Acids, 2010.

Martin, L. P., Hamilton, T. C. & Schilder, R. J. 2008. Platinum Resistance: The Role of DNA Repair Pathways. Clinical Cancer Research, 14, 1291-1295.

Brozovic, A., Ambriovic-Ristov, A. & Osmak, M. 2010. The correlation between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol, 40, 347-59.

Florea, A.-M. & Büsselberg, D. 2011. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers, 3, 1351-1371.

Berndtsson, M., Hagg, M., Panaretakis, T., Havelka, A. M., Shoshan, M. C. & Linder, S. 2007. Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA. Int J Cancer, 120, 175-80.

Nanbu, K., Konishi, I., Komatsu, T., Mandai, M., Yamamoto, S., Kuroda, H., et al. 1996. Expression of heat shock proteins HSP70 and HSP90 in endometrial carcinomas. Correlation with clinicopathology, sex steroid receptor status, and p53 protein expression. Cancer, 77, 330-8.

Castle, P. E., Ashfaq, R., Ansari, F. & Muller, C. Y. 2005. Immunohistochemical evaluation of heat shock proteins in normal and preinvasive lesions of the cervix. Cancer Lett, 229, 245-52.

De Sanjose, S., Quint, W. G., Alemany, L., Geraets, D. T., Klaustermeier, J. E., Lloveras, B., et al. 2010. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol, 11, 1048-56.

Schmitt, E., Gehrmann, M., Brunet, M., Multhoff, G. & Garrido, C. 2007. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol, 81, 15-27.

Cepeda, V., Fuertes, M. A., Castilla, J., Alonso, C., Quevedo, C. & Perez, J. M. 2007. Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem, 7, 3-18.

Fulda, S. 2009. Tumor resistance to apoptosis. Int J Cancer, 124, 511-5.

Park, C. S., Joo, I. S., Song, S. Y., Kim, D. S., Bae, D. S. & Lee, J. H. 1999. An immunohistochemical analysis of heat shock protein 70, p53, and estrogen receptor status in carcinoma of the uterine cervix. Gynecol Oncol, 74, 53-60.

Simanjuntak, R. & Askandar, B. 2012. Ekspresi Heat Shock Protein 70 (HSP-70) dan P53 Mutan sebagai Faktor Prediksi Operabilitas Pasca-kemoterapi Neoajuvan pada Kanker Serviks IIB. Indonesian Journal of Cancer, 6, 171-178.

Dasari, S. & Bernard Tchounwou, P. 2014. Cisplatin in cancer therapy: Molecular mechanisms of action. European Journal of Pharmacology, 740, 364-378.


  • There are currently no refbacks.

Copyright (c) 2020 Majalah Obstetri & Ginekologi



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License