Deteksi Penyakit Dengue Hemorrhagic Fever dengan Pendekatan One Class Classification
Downloads
Abstrak” Pada kasus deteksi penderita penyakit demam berdarah (Dengue Hemorrhagic Fever- DHF), data training yang tersedia umumnya hanya data pasien penderita positif. Sedangkan data orang normal (data negatif) tidak tersedia secara khusus. Pada makalah ini dipaparkan pembangunan model klasifikasi untuk deteksi DHF dengan pendekatan One Class Classification (OCC). Data yang digunakan pada penelitian ini adalah hasil uji darah dari laboratorium dari pasien penderita penyakit demam berdarah. Metode yang diteliti adalah One-class Support Vector Machine dan K-Means. Hasil yang diperoleh pada penelitian ini adalah untuk metode SVM memiliki nilai precision = 1,0, recall = 0,993, f-1 score = 0,997, dan tingkat akurasi sebesar 99,7% sedangkan dengan metode K-Means diperoleh nilai precision = 0,901, recall = 0,973, f-1 score = 0,936, dan tingkat akurasi sebesar 93,3%. Hal ini menunjukkan bahwa metode SVM sedikit lebih unggul dibandingkan dengan K-Means untuk kasus ini.
Kata Kunci” demam berdarah, Dengue Hemorrhagic Fever, K-Means, One Class Classification, OSVM
Abstract” Two class classification problem maps input into two target classes. In certain cases, training data is available only in the form of a single class, as in the case of Dengue Hemorrhagic Fever (DHF) patients, where only data of positive patients is available. In this paper, we report our experiment in building a classification model for detecting DHF infection using One Class Classification (OCC) approach. Data from this study is sourced from laboratory tests of patients with dengue fever. The OCC methods compared are One-Class Support Vector Machine and One-Class K-Means. The result shows SVM method obtained precision value = 1.0, recall = 0.993, f-1 score = 0.997, and accuracy of 99.7% while the K-Means method obtained precision value = 0.901, recall = 0.973, f- 1 score = 0.936, and accuracy of 93.3%. This indicates that the SVM method is slightly superior to K-Means for One-Class Classification of DHF patients.
Keywords” Dengue Hemorrhagic Fever, K-Means, One Class Classification, OSVM
Astuti, T., Suciati, Mujiati, I., Ayu, D., Ristianah, V., & Lestari, W. (2016). Penerapan Algoritme J48 Untuk Prediksi Penyakit Demam Berdarah. Telematika , 9 (2), 1-10.
Cabral, G., & de Oliveira, A. (2014). One-class Classification for heart disease diagnosis. 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (hal. 2551-2556). IEEE.
Haryanto, T. (2013). Prediksi Penyakit Demam Berdarah Dan Typhus Dengan Algoritma C5.0. Skripsi, Telkom University.
Khan, S., & Madden, M. (2010). A Survey of Recent Trends in One Class Classification. Artificial Intelligence and Cognitive Science, (hal. 188-197).
Khan, S., & Madden, M. (2014). One-class classification: taxonomy of study and review of techniques. The Knowledge Engineering Review , 29 (3), 345-374.
Lesmana, I., Hikmah, F., & Karimah, R. (2014). Model Prediktif Identifikasi Tersangka Tuberkulosis Dan Demam Berdarah Menggunakan Data Mining. Seminar Nasional Teknologi Informasi dan Multimedia (hal. 2.02.1-2.02.6). STMIK AMIKOM Yogyakarta.
Munah, M. (2015). Implementasi Algoritma C4.5 Untuk Mengklasifikasi Penyakit Tipes Dan DBD. Universitas Dian Nuswantoro.
Nagi, J., Yap, K., Tiong, S., Ahmed, S., & Mohamad, M. (2010). Nontechnical Loss Detection for Metered Customers in Power Utility Using Support Vector Machines. IEEE Transactions on Power Delivery (hal. 1162-1171). IEEE.
Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., & Platt, J. Support vector method for novelty detection. Proceedings of the 12th International Conference on Neural Information Processing Systems (NIPS'99).
Suwardi, U. (2012). Komparasi Algoritma Backpropagation, Nearest Neighbor, Dan Decision Tree Untuk Mendeteksi Penyakit Demam Berdarah Pada Pasien Opname. Jurnal Teknologi Informasi , 8 (1), 57-67.
Tax, D. (2001). One-class classification. Desertasi, TU Delft.
Zhang, J., Lu, J., & Zhang, G. (2011). Combining one class classification models for avian influenza outbreaks. IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (MDCM). IEEE.
Authors who publish with this journal agree to the following terms:
All accepted papers will be published under a Creative Commons Attribution 4.0 International (CC BY 4.0) License. Authors retain copyright and grant the journal right of first publication. CC-BY Licenced means lets others to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially).