The Number Of Lactobacillus acidophilus After Using Chlorhexidine 2%, Laser Diode (405 nm), And Combination Of Chlorhexidine 2% With Laser Diode (405 nm)
Downloads
Background: Lactobacillus acidophilus is gram-positive bacteria that produces acids from carbohydrates and causing dental caries. Caries treatment is done by the cavitation of teeth which is preceded by cavity disinfection. The purpose of cavity disinfection is to kill microorganisms and reduce the risk of new carious lesions. Bacterial elimination can be done using chlorhexidine and laser. Chlorhexidine is widely used for cleaning cavities but cannot remove biofilms, tissue debris and has limited elimination of bacteria in the dentinal tubules. Another way to eliminate bacteria is using Photodynamic Therapy (PDT) which consists of photosensitizer and laser. Until now there has not been a single ingredient that is considered to cleanse the cavity thoroughly. There has been no research yet that examine the number of Lactobacillus acidophilus after using chlorhexidine 2%, laser diode (405 nm), and combination of 2% chlorhexidine with laser diode (405 nm). Objective: To compare the decreasing number of living Lactobacillus acidophilus after using chlorhexidine 2%, laser diode (405 nm), and combination of chlorhexidine 2% with laser diode (405 nm). Methods: A total of 24 samples of Lactobacillus acidophilus were divided into 4 groups: (I) chlorhexidine 2%, (II) chlorophyll photosensitizer and 75 seconds irradiation, (III) combination of chlorhexidine2%, chlorophyll photosensitizer, and 75 seconds irradiation. After treatment, the sample was incubated 48 hours and the colony count was calculated for each group. Results of the analysis were carried out by ANOVA and Tukey HSD tests with p <0.05. Results: The average number of group colonies (I) was 35.33 CFU/ml, (II) 16.83 CFU/ml, (III) 9.5 CFU/ml, (IV) 123.33 CFU/ml. Conclusion: The combination of 2% chlorhexidine with diode laser (405 nm) gives the least amount of living Lactobacillus acidophilus bacteria compared with the administration of 2% chlorhexidine and laser diode (405 nm).
Yadav, K. & Prakash, S., 2016. Dental Caries: A Review. Asian Journal of Biomedical and Pharmaceutical Sciences, 6(53): 1-7.
Riset Kesehatan Dasar (Riskesdas), 2018. Laporan Nasional Riskesdas 2018. Jakarta: Kementrian Kesehatan Republik Indonesia – Badan Penelitian dan Pengembangan Kesehatan, pp. 207.
Rí´ças, I.N., Alves, F.R., Rachid C.T., Lima, K.C, Assunçí£o, I.V., Gomes, P.N., Siquera Jr, J.F., 2016. Microbiome of Deep Dentinal Caries Lesions in Teeth with Symptomatic Irreversible Pupitis. PloS ONE 11(5): e0154653.
Goldberg, M., 2016. Understanding Dental Caries: From Pathogenesis to Prevention and Therapy. Switzerland: Springer International Publishing. pp. 224.
Mirhadi, H., Azar, M. R., Abbaszadegan, A., Geramizadeh, B., Torabi, S., & Rahsaz, M., 2014. Citotoxicity of Chlorhexidine-Hydrogen Peroxide Combination in Different Concentration on Cultured Human Periodontal Ligament Fibroblasts. Dental Research fJournal, 11(6): 645-648.
Ruslan, M. I., 2018. Degradasi Extraceluller Polymeric Substance (EPS) Biofilm Lactobacillus acidophilus Akibat Paparan Laser Dioda 405 nm dan Fotosensitiser Klorofil. Fakultas Kedokteran Gigi Universitas Airlangga.
Araujo, N. C., Fontana, C. R., Bagnato, V. S., & Gerbi, M. E. M., 2012. Photodynamic Effects of Curcumin Against Cariogenis Pathogens. Photomedicine and Laser Surgery, 30(7): 393-399.
Kaiwar, A., Usha, H. L., Meena, N., Ashwini, P., Murthy, C. S., 2013. The Efficiency of Root Canal Disinfection Using Diode Laser: In vitro Study. Indian Journal of Dental Research, 24(1): 14-18.
Astuti, S. D., 2018. An In-vitro Antimicrobial Effect of 405 nm laser diode combined with chlorophyll of Alfalfa (Medicago sativa L.) on Enterococcus faecalis. Dental Journal, 51(1): 47-51.
Iselinni, C., Meidyawati, R., Djauharie, N., 2017. Effects of A 980-nm Diode Laser's Activation of 2.5% NaOCl and 2% Chlorhexidine Antifungal Irrigation Solutions on Candida albicans Biofilms.
Shahar-Helft, S., Slutzky-Goldberg, I., Moshonov, J., Stabhotz, A., Jacobovitz, M., Tam, A., & Steinberg, D., 2011. Synergestic Effect of Er: YAG Laser Irradiation in Combination with Chlorhexidine on the Viability of Enterococcus faecalis: An In Vitro Study. Photomedicine and Laser Surgery, 29(11): 753-758.
Vijayalakshmi, S., Rajasekar, S., Mohankumar, A., 2018. Antagonistic Activity of Multi-functional Gold Standard Chlorhexidine Against Lactobacillus acidophilus Isolated From Childhood Caries. International Journal of Biology Research, 3(1): 295-299.
Suma, N. K., Shashibhushan, K. K., Reddy, V. S., 2017. Effect of Dentin Disinfection with 2% Chlorhexidine Gluconate and 0,3% Iodine on Dentin Bond Strength: An in vitro Study. International Journal of Clinical Pediatric Dentistry, 10(3): 223-228.
Wright, P. P. & Walsh, L. J., 2017. Optimizing Antimicrobial Agents in Endodontics. Intech.
Chandra, B. S. & Gopikrishna, V., 2014. Grossman's Endodontic Practice 13th ed. India: Wolters Kluwer Health, pp.332.
Ningtyas, I., 2015. Fotoinaktivasi Laser Dioda pada Streptococcus mutans Biofilm secara In Vitro.
Henry, J., 2012. Advances in Food and Nutrition Research 1st ed. vol. 67 pp. 52. UK: Elsevier.
Tjandra, A., 2017. Pengaruh Lama Penyinaran Sinar Diode Laser 405 nm dengan Fotosensitizer Klorofil Terhadap Jumlah Bakteri E. faecalis. Fakultas Kedokteran Gigi Universitas Airlangga.
Ingle, J. I., Bakland, K. L. & Baumgartner, J. C., 2008. Ingle's Endodontics 6. Hamilton: BC Decker Inc. pp. 954, 1002-1003.
Melo W. C. M. A., Castro, L. F., Dal'Mas, R. M. M. T. S., & Perussi, J. R., 2011. Effectiveness of Photodynamic Therapy on Gram-Negative bacteria. Sciences against microbial pathogens: communicating current research and technological advances, ed. A. Mendez-Vilas (Badajoz: Formatex Research Center):662-667.
Hanakova, A., Bogdanova, K., Tomankova, K., Pizova, K., Malohlava, J., Binder, S., Bajgar, R., Langova, K., Kolar, M., Mosinger, J., & Kolarova, H., 2014. The Application of Antimicrobial Photodynamic Therapy on S. aureus and E. coli Using Porphyrin Photosensitizers Bound to Cyclodextrin. Microbiological Research, 169(2-3): 163-170.
Rajesh, S., Koshi, E., Philip, K., & Mohan, A., 2011. Antimicrobial Photodynamic Therapy: An Overview. Journal of Indian Society of Periodontology, 15(4): 323-327.
Liu, Y., Qin, R., Zaat, S. A. J., Breukink, E., Heger, M., 2015. Antibacterial photodynamic Therapy: Overview of a Promising Approach to Fight Antibiotic-Resistant Bacterial Infections. Journal of Clinical ang Translationa Research, 1(3): 140-167.
Diogo, P., Gonçalves, T., Palma, P., & Santos, J. M., 2015. Photodynamic Antimicrobial Chemotherapy for Root Canal System Asepsis: A narrative Literature Review. International Journal of Dentistry.
CDJ by Unair is licensed under a Creative Commons Attribution 4.0 International License.
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without restrictions