N-Acetylcysteine Improves Renal Function and Reduces Tissue Malondialdehyde Levels in Glycerol-Induced Acute Kidney Injury
Downloads
Introduction: The etiology of myoglobinuric acute kidney injury involves oxidative injury brought on by the Fenton reaction and myoglobin redox cycle. Renal tubules may be harmed, and lipid peroxidation compounds with vasoconstrictor characteristics may be produced. N-acetylcysteine (NAC) is an antioxidant shown to improve renal microcirculation and have protective effects in various models of renal damage. The aim of the study was to demonstrate the protective impact of NAC in glycerol-induced rats by measuring tissue malondialdehyde (MDA) level and renal function test (RFT), and to determine the correlation between the protective effect and NAC dose.
Methods: This study measured tissue malondialdehyde (MDA) and renal function to examine any protective effect of NAC in a glycerol-induced rat model and to determine whether the effect was dose-related. Five groups of male Wistar rats were used: 1) saline control group, (2) glycerol (50%, 8mL/kg, i.m) plus saline i.v group, 3) glycerol plus NAC (100 mg/kg)-treated group, 4) glycerol plus NAC (200 mg/kg)-treated group, 5) glycerol plus NAC (400 mg/kg)-treated group. At 24 hrs, after glycerol injection, rats were sacrificed, cardiac blood was taken for renal function measurement, and renal tissues were removed for thiobarbituric acid MDA level assessment.
Results: Our study revealed that glycerol administration significantly amplified renal tissue MDA, serum creatinine, and BUN (blood urea nitrogen) levels. However, NAC administration dampened the MDA increment and renal function deterioration (p<0.05). Moreover, tissue MDA, BUN, and serum creatinine levels were significantly correlated to NAC dose (r=0.485; r=0.491; rs=0.544, respectively; all p<0.05), indicating that NAC protection declines by dose increments.
Conclusion: In this glycerol-induced acute kidney injury rat model, the administration of intravenous NAC 100 mg/kg reduced lipid peroxidation and improved renal function. Nevertheless, the protective effect was diminished in higher doses.
Andrés Juan, C., Manuel Pérez de la Lastra, J., Plou, F. J., Pérez-Lebeña, E., & Reinbothe, S. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Science, 22, 4642. https://doi.org/10.3390/ijms
Bauer, J., Ripperger, A., Frantz, S., Ergün, S., Schwedhelm, E., & Benndorf, R. A. (2014). Pathophysiology of isoprostanes in the cardiovascular system: Implications of isoprostane-mediated thromboxane A2 receptor activation. British Journal of Pharmacology, 171(13), 3115–3131. https://doi.org/10.1111/bph.12677
Chavez, L. O., Leon, M., Einav, S., & Varon, J. (2016). Beyond muscle destruction: A systematic review of rhabdomyolysis for clinical practice. In Critical Care (Vol. 20, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13054-016-1314-5
Elshiekh, M., Kadkhodaee, M., Seifi, B., & Ranjbaran, M. (2019). Additional effects of erythropoietin pretreatment, ischemic preconditioning, and n-acetylcysteine posttreatment in rat kidney reperfusion injury. Turkish Journal of Medical Sciences, 49(4), 1249–1255. https://doi.org/10.3906/sag-1812-228
Eman Ali Abdelrazik, Hend Mohammed Mohammed Hassan, Zienab Abdallah Mahmoud, Alshimaa Magdy Yousef, & Eman Abdo Elsayed. (2022). Renoprotective effect of N-acetylcystein and vitamin E in bisphenol A-induced rat nephrotoxicity; Modulators of Nrf2/ NF-κB and ROS signaling pathway. Acta Bio-Medica : Atenei Parmensis, 93(6), e2022301. https://doi.org/10.23750/abm.v93i6.13732
Ergin, B., Akin, S., & Ince, C. (2021). Kidney microcirculation as a target for innovative therapies in AKI. Journal of Clinical Medicine, 10(18). https://doi.org/10.3390/jcm10184041
Ergin, B., Guerci, P., Zafrani, L., Nocken, F., Kandil, A., Gurel-Gurevin, E., Demirci-Tansel, C., & Ince, C. (2016). Effects of N-acetylcysteine (NAC) supplementation in resuscitation fluids on renal microcirculatory oxygenation, inflammation, and function in a rat model of endotoxemia. Intensive Care Medicine Experimental , 4(1). https://doi.org/10.1186/s40635-016-0106-1
Ezeriņa, D., Takano, Y., Hanaoka, K., Urano, Y., & Dick, T. P. (2018). N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H 2 S and Sulfane Sulfur Production. Cell Chemical Biology, 25(4), 447-459.e4. https://doi.org/10.1016/j.chembiol.2018.01.011
Fernández-Fúnez, A., Polo, F. J., Broseta, L., Valer, J., & Zafrilla, L. (2002). Effects of N-acetylcysteine on myoglobinuric-acute renal failure in rats. Renal Failure, 24(6), 725–733. https://doi.org/10.1081/JDI-120015676
Gaschler, M. M., & Stockwell, B. R. (2017). Lipid peroxidation in cell death. In Biochemical and Biophysical Research Communications (Vol. 482, Issue 3, pp. 419–425). Elsevier B.V. https://doi.org/10.1016/j.bbrc.2016.10.086
Gaut, J. P., & Liapis, H. (2021). Acute kidney injury pathology and pathophysiology: A retrospective review. In Clinical Kidney Journal (Vol. 14, Issue 2, pp. 526–536). Oxford University Press. https://doi.org/10.1093/ckj/sfaa142
Halliwell, B. (2013). The antioxidant paradox: Less paradoxical now? British Journal of Clinical Pharmacology, 75(3), 637–644. https://doi.org/10.1111/j.1365-2125.2012.04272.x
Hasanatuludhhiyah, N., Basori, A., & Suhartati. (2015). Gangguan ginjal akut akibat rhabdomiolisis. Majalah Biomorfologi, 28(2), 26–31.
Hebert, J. F., Burfeind, K. G., Malinoski, D., & Hutchens, M. P. (2023). Molecular Mechanisms of Rhabdomyolysis-Induced Kidney Injury: From Bench to Bedside. In Kidney International Reports (Vol. 8, Issue 1, pp. 17–29). Elsevier Inc. https://doi.org/10.1016/j.ekir.2022.09.026
Heyman, S. N., Goldfarb, M., Shina, A., Karmeli, F., & Rosen, S. (2003). N-acetylcysteine ameliorates renal microcirculation: Studies in rats. In Kidney International (Vol. 63).
Honore, P. M., De Bels, D., & Spapen, H. D. (2018). Beneficial effects of antioxidant therapy in crush syndrome in a rodent model: enough evidences to be used in humans? In Annals of Intensive Care (Vol. 8, Issue 1). Springer Verlag. https://doi.org/10.1186/s13613-018-0431-5
Huang, S., You, J., Wang, K., Li, Y., Zhang, Y., Wei, H., Liang, X., & Liu, Y. (2019). N -Acetylcysteine Attenuates Cisplatin-Induced Acute Kidney Injury by Inhibiting the C5a Receptor. BioMed Research International, 2019. https://doi.org/10.1155/2019/4805853
Kerksick, C., & Willoughby, D. (2005). The Antioxidant Role of Glutathione and N-Acetyl-Cysteine Supplements and Exercise-Induced Oxidative Stress. In Journal of the International Society of Sports Nutrition©. A National Library of Congress Indexed Journal. ISSN (Vol. 2, Issue 2). www.sportsnutritionsociety.org
Kim, J. H., Lee, S. S., Jung, M. H., Yeo, H. D., Kim, H. J., Yang, J. I., Roh, G. S., Chang, S. H., & Park, D. J. (2010). N-acetylcysteine attenuates glycerol-induced acute kidney injury by regulating MAPKs and Bcl-2 family proteins. Nephrology Dialysis Transplantation, 25(5), 1435–1443. https://doi.org/10.1093/ndt/gfp659
Liu, Z. Z., Mathia, S., Pahlitzsch, T., Wennysia, I. C., Persson, P. B., Lai, E. Y., Högner, A., Xu, M. Z., Schubert, R., Rosenberger, C., & Patzak, A. (2017). Myoglobin facilitates angiotensin II-induced constriction of renal afferent arterioles. Am J Physiol Renal Physiol, 312, 908–916. https://doi.org/10.1152/ajprenal.00394.2016.-Vaso
Makris, K., & Spanou, L. (2016). Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. In Acute Kidney Injury Clin Biochem Rev (Vol. 37, Issue 2).
Moselhy, H. F., Reid, R. G., Yousef, S., & Boyle, S. P. (2013). A specific, accurate, and sensitive measure of total plasma malondialdehyde by HPLC. Journal of Lipid Research, 54(3), 852–858. https://doi.org/10.1194/jlr.D032698
Mousleh, R., Shaza, B. ;, Laham, A., Al-Manadili, A., & Al Laham, S. (2018). The Preventive Role of Pioglitazone in Glycerol-Induced Acute Kidney Injury in Rats during Two Different Treatment Periods. In Iran J Med Sci March (Vol. 43, Issue 2).
Purnomo, A. F., Permana, K. R., & Daryanto, B. (2021). Acute Kidney Injury Following Mannitol Administration in Traumatic Brain Injury: A Meta-analysis. Acta Informatica Medica, 29(4), 270–274. https://doi.org/10.5455/aim.2021.29.270-274
Ratliff, B. B., Abdulmahdi, W., Pawar, R., & Wolin, M. S. (2016). Oxidant mechanisms in renal injury and disease. In Antioxidants and Redox Signaling (Vol. 25, Issue 3, pp. 119–146). Mary Ann Liebert Inc. https://doi.org/10.1089/ars.2016.6665
Reis, N. G., Francescato, H. D. C., de Almeida, L. F., Silva, C. G. A. da, Costa, R. S., & Coimbra, T. M. (2019). Protective effect of calcitriol on rhabdomyolysis-induced acute kidney injury in rats. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43564-1
Ribas, V., García-Ruiz, C., & Fernández-Checa, J. C. (2014). Glutathione and mitochondria. In Frontiers in Pharmacology: Vol. 5 JUL. Frontiers Research Foundation. https://doi.org/10.3389/fphar.2014.00151
Semenovich, D. S., Plotnikov, E. Y., Lukiyenko, E. P., Astrowski, A. A., & Kanunnikova, N. P. (2022). Protective Effect of D-Panthenol in Rhabdomyolysis-Induced Acute Kidney Injury. International Journal of Molecular Sciences, 23(20). https://doi.org/10.3390/ijms232012273
Soares, T. J., Costa, R. S., Volpini, R. A., Da, G. A., And, S., & Coimbra, T. M. (2002). Long-term evolution of the acute tubular necrosis (ATN) induced by glycerol: role of myofibroblasts and macrophages. In Int. J. Exp. Path (Vol. 83).
Sotler, R., PoljÅ¡ak, B., Dahmane, R., Jukić, T., Pavan Jukić, D., Rotim, C., TrebÅ¡e, P., & Starc, A. (2019). Prooxidant activities of antioxidants and their impact on health. In Acta clinica Croatica (Vol. 58, Issue 4, pp. 726–736). NLM (Medline). https://doi.org/10.20471/acc.2019.58.04.20
van 't Erve, T. J., Kadiiska, M. B., London, S. J., & Mason, R. P. (2017). Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis. Redox Biology, 12, 582–599. https://doi.org/10.1016/j.redox.2017.03.024
Yuqiang, C., Lisha, Z., Jiejun, W., Qin, X., & Niansong, W. (2022). Pifithrin-α ameliorates glycerol induced rhabdomyolysis and acute kidney injury by reducing p53 activation. Renal Failure, 44(1), 473–481. https://doi.org/10.1080/0886022X.2022.2048857
Zamorskii, I. I., Unguryan, T. M., & Melnichuk, S. P. (2019). The Antioxidant Activity of Ceruloplasmin in Rhabdomyolysis-Induced Acute Kidney Injury. Biophysics (Russian Federation), 64(6), 1003–1006. https://doi.org/10.1134/S0006350919060241
Copyright (c) 2023 Nurina Hasanatuludhhiyah, Arifian Hardi Putri Ratnani, Suhartati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) Author
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without restrictions.
3. The formal legal aspect of journal publication accessibility refers to Creative Commons Atribution-Share Alike 4.0 (CC BY-SA).