Coronavirus Disease 2019 (COVID-19) Leads to Risen Hypertension Prevalence among Type 2 Diabetes Mellitus Patients
Downloads
Introduction: Diabetes is the second most prevalent comorbidity of coronavirus disease 2019 (COVID-19) cases in Indonesia. Type 2 diabetes mellitus (T2DM) patients experience increased blood vessel remodeling, resulting in elevated peripheral arterial resistance. In addition to exacerbating the severity of T2DM, COVID-19 also increases hypertension risk. This study aimed to elucidate the effect of COVID-19 on hypertension prevalence among T2DM patients.
Methods: This research employed an analytical observational design, specifically the case-control study design. A total of 200 datasets were extracted from medical records covering the period from May 2020 to April 2022 at Dr. Soetomo General Academic Hospital, Surabaya, Indonesia. The inclusion criteria for the study samples were T2DM patients diagnosed by a doctor, as documented in their medical records, with no previous history of hypertension. The data were analyzed using the Chi-square test at a significance level of p<0.05 to determine the effect of COVID-19 on hypertension prevalence in T2DM patients.
Results: There were 100 T2DM patients without COVID-19 (30 with hypertension and 70 without hypertension) and 100 T2DM patients with COVID-19 (45 with hypertension and 55 without hypertension). The Chi-square test indicated an effect associated with COVID-19 on hypertension prevalence in T2DM patients, with p=0.028 and an odds ratio (OR) of 1.909.
Conclusion: The study suggests that COVID-19 infection increases the risk of hypertension in T2DM patients. Raising awareness of the complications of hypertension is important, particularly for high-risk individuals, such as T2DM patients who have a history of COVID-19.
Highlights:
- There has been no research examining the relationship between coronavirus disease 2019 (COVID-19) and the prevalence of hypertension complications, especially in type 2 diabetes mellitus (T2DM) patients.
- This study highlights the importance of raising awareness regarding the finding that the incidence of COVID-19 increases the prevalence of hypertension in T2DM patients.
Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L (2020). The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thrombosis Research 194: 101–115. doi: 10.1016/j.thromres.2020.06.029.
Alfhad H, Saftarina F, Kurniawan B (2020). Dampak infeksi SARS-Cov-2 terhadap penderita hipertensi. Majority 9(1): 1–5. Retrieved from https://garuda.kemdikbud.go.id/documents/detail/3941830.
American Diabetes Association (2013). Diagnosis and classification of diabetes mellitus. Diabetes Care 36 (Supplement_1): S67–S74. doi: 10.2337/dc13-S067.
BBC (2021). COVID-19 Indonesia mencapai setengah juta kasus positif, 25% di antaranya ada di Jakarta. Retrieved from https://www.bbc.com/indonesia/indonesia-51850113.
Etikan I, Musa SA, Alkassim RS (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics 5(1): 1. doi: 10.11648/j.ajtas.20160501.11.
Guo W, Li M, Dong Y, Zhou H, Zhang Z, et al. (2020). Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes/Metabolism Research and Reviews 36(7): 1–9. doi: 10.1002/dmrr.3319.
Hayden MR (2020). An immediate and long-term complication of COVID-19 may be type 2 diabetes mellitus: The central role of β-cell dysfunction, apoptosis and exploration of possible mechanisms. Cells 9(11): 1–23. doi: 10.3390/cells9112475.
Hussain A, do Vale Moreira NC (2020). Clinical considerations for patients with diabetes in times of COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 14(4): 451–453. doi: 10.1016/j.dsx.2020.03.005.
International Diabetes Federation (2015). IDF Diabetes Atlas, 7th edition. Brussels, Belgium. Retrieved from https://diabetesatlas.org/atlas/seventh-edition/.
International Diabetes Federation (2019). IDF Diabetes Atlas, 9th edition. Brussels, Belgium. Retrieved from https://diabetesatlas.org/atlas/ninth-edition/.
Johnson LL (2018). Design of observational studies. In: Principles and Practice of Clinical Research. Elsevier. doi: 10.1016/B978-0-12-849905-4.00017-4.
Kaur R, Kaur M, Singh J (2018). Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovascular Diabetology 17(1): 121. doi: 10.1186/s12933-018-0763-3.
Kulcsar KA, Coleman CM, Beck SE, Frieman MB (2019). Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight 4(20). doi: 10.1172/jci.insight.131774.
Kushner A, West WP, Khan Suheb MZ, Pillarisetty LS (2024). Virchow triad. StatPearls Publishing, Treasure Island, FL. Retrieved from from: https://www.ncbi.nlm.nih.gov/books/NBK539697/.
Li G, Chen Z, Lv Z, Li H, Chang D, et al. (2021). Diabetes mellitus and COVID-19: Associations and possible mechanisms. International Journal of Endocrinology 2021: 1–10. doi: 10.1155/2021/7394378.
Lienggonegoro LA (2022). Komplikasi dan kematian akibat COVID-19. Retrieved from https://www.badankebijakan.kemkes.go.id/komplikasi-dan-kematian-akibat-covid-19/.
Lin X, Xu Y, Pan X, Xu J, Ding Y, et al. (2020). Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Scientific Reports 10(1): 14790. doi: 10.1038/s41598-020-71908-9.
Marzuki I, Bachtiar E, Zuhriyatun F, Mahardika A, Purba V, et al. (2021). COVID-19: Seribu satu wajah. (A. Karim & J. Simarmata, Eds.). Yayasan Kita Menulis. Retrieved from https://scholar.google.com/citations?view_op=view_citation&hl=id&user=AjWcdX8AAAAJ&citation_for_view=AjWcdX8AAAAJ:HIFyuExEbWQC.
Ministry of Health of the Republic of Indonesia (2020). Dashboard COVID-19. Retrieved from https://dashboardcovid19.kemkes.go.id/.
Mukaz DK, Guo B, Long DL, Judd SE, Plante TB, et al. (2023). D-dimer and the risk of hypertension: The reasons for geographic and racial differences in stroke cohort study. Research and Practice in Thrombosis and Haemostasis 7(1): 100016. doi: 10.1016/j.rpth.2022.100016.
Muniyappa R, Gubbi S (2020). COVID-19 pandemic, coronaviruses, and diabetes mellitus. American Journal of Physiology-Endocrinology and Metabolism 318(5): E736–E741. doi: 10.1152/ajpendo.00124.2020.
Nanda CCS, Indaryati S, Koerniawan D (2021). Pengaruh komorbid hipertensi dan diabetes mellitus terhadap kejadian COVID-19. Jurnal Keperawatan Florence Nightingale 4(2): 68–72. doi: 10.52774/jkfn.v4i2.72.
Ohishi M (2018). Hypertension with diabetes mellitus: Physiology and pathology. Hypertension Research 41(6): 389–393. doi: 10.1038/s41440-018-0034-4.
Pandis N (2016). The Chi-square test. American Journal of Orthodontics and Dentofacial Orthopedics 150(5): 898–899. Retrieved from https://www.ajodo.org/article/S0889-5406(16)30449-8/fulltext.
Putri GS (2020, October 23). Menelusuri klaster pertama penularan COVID-19 di Indonesia. Kompas. Retrieved from https://www.kompas.com/sains/read/2020/10/23/090200623/menelusuri-klaster-pertama-penularan-covid-19-di-indonesia?page=all.
Rana R, Singhal R (2015). Chi-square test and its application in hypothesis testing. Journal of the Practice of Cardiovascular Sciences 1(1): 69. doi: 10.4103/2395-5414.157577.
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, et al. (2024). Oxidative stress and cerebral vascular tone: The role of reactive oxygen and nitrogen species. International Journal of Molecular Sciences 25(5): 3007. doi: 10.3390/ijms25053007.
Schmidt-Lauber C, Schmidt EA, Hänzelmann S, Petersen EL, Behrendt C-A, et al. (2023). Increased blood pressure after nonsevere COVID-19. Journal of Hypertension 41(11): 1721–1729. doi: 10.1097/HJH.0000000000003522.
Sen S, Chakraborty R, Kalita P, Pathak MP (2021). Diabetes mellitus and COVID-19: Understanding the association in light of current evidence. World Journal of Clinical Cases 9(28): 8327–8339. doi: 10.12998/wjcc.v9.i28.8327.
South AM, Diz DI, Chappell MC (2020). COVID-19, ACE2, and the cardiovascular consequences. American Journal of Physiology-Heart and Circulatory Physiology 318(5): H1084–H1090. doi: 10.1152/ajpheart.00217.2020.
Tempo (2020). Usia dan faktor berisiko wafat karena COVID-19 menurut Satgas, December 16. Retrieved from https://www.tempo.co/gaya-hidup/usia-dan-faktor-berisiko-wafat-karena-covid-19-menurut-satgas-555954.
Tousoulis D, Papageorgiou N, Androulakis E, Siasos G, Latsios G, et al. (2013). Diabetes mellitus-associated vascular impairment: Novel circulating biomarkers and therapeutic approaches. Journal of the American College of Cardiology 62(8): 667–676. doi: 10.1016/j.jacc.2013.03.089.
Vaduganathan M, Vardeny O, Michel T, McMurray JJ V, Pfeffer MA, et al. (2020). Renin-angiotensin-aldosterone system inhibitors in patients with COVID-19. The New England Journal of Medicine 382(17): 1653–1659. doi: 10.1056/NEJMsr2005760.
World Health Organization (2024). Diabetes. Retrieved from https://www.who.int/news-room/fact-sheets/detail/diabetes.
Yang J, Zheng Y, Gou X, Pu K, Chen Z, et al. (2020). Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. International Journal of Infectious Diseases 94: 91–95. doi: 10.1016/j.ijid.2020.03.017.
Copyright (c) 2025 Arnindia Puspitasari, Rimbun, Artaria Tjempakasari, Dias Tiara Putri Utomo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) Author
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without restrictions.
3. The formal legal aspect of journal publication accessibility refers to Creative Commons Atribution-Share Alike 4.0 (CC BY-SA).