Main Article Content
Abstract
Highlights:
- Most urinary tract infections are caused by Gram-negative bacteria with E. coli being the most common bacteria.
- Antibiotics with the highest susceptibility for Gram-negative bacteria were ertapenem, meropenem, amikacin, and imipenem.
- Antibiotics with the highest susceptibility for Gram-positive bacteria mainly were susceptible to chloramphenicol,streptomycin, vancomycin, rifampin, tigecycline, teicoplanin, and ampicillin.
Abstract:
Urinary tract infection (UTI) is one of the most common bacterial infections. Inappropriate antibiotic use for UTI treatment may lead to antibiotic resistance. This study aimed to provide an updated bacterial and antibiogram profile from urine specimens of patients diagnosed with UTI. This study was a retrospective study using urine culture and antibiotic susceptibility test results obtained from Clinical Microbiology Laboratory in a tertiary general hospital in Surabaya, Indonesia for a two-month period patients. Most aged more than and/or equal to 59 years, in both sexes. Gram-negative bacteria, particularly , was being the most between June to July 2019. There were 215 patients with significant urine culture results of 54.4% from Escherichia coli female bacteria were carbapenem antibiotics and amikacin, while teicoplanin and vancomycin were some antibiotics susceptible to gramcommon bacteria that caused UTI, followed by K. pneumoniae. Some antibiotics with the highest susceptibility to gram-negative positive bacteria. This study result indicated that there was an urge to conduct local antibiogram profile investigation due to the low susceptibilities shown in recent empirical therapy recommendations, such as trimethoprim sulfamethoxazole, fluoroquinolone, nitrofurantoin, and fosfomycin.
Keywords
Article Details
Copyright (c) 2022 Folia Medica Indonesiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
Folia Medica Indonesiana is a scientific peer-reviewed article which freely available to be accessed, downloaded, and used for research purposes. Folia Medica Indonesiana (p-ISSN: 2541-1012; e-ISSN: 2528-2018) is licensed under a Creative Commons Attribution 4.0 International License. Manuscripts submitted to Folia Medica Indonesiana are published under the terms of the Creative Commons License. The terms of the license are:
Attribution ” You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial ” You may not use the material for commercial purposes.
ShareAlike ” If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions ” You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
You are free to :
Share ” copy and redistribute the material in any medium or format.
Adapt ” remix, transform, and build upon the material.
References
- Aswani SM, Chandrashekar U, Shivashankara K, Pruthvi B (2014). Clinical profile of urinary tract infections in diabetics and non-diabetics. Australas Med J. 29–34.
- Bonadio M, Costarelli S, Morelli G, Tartaglia T (2006). The influence of diabetes mellitus on the spectrum of uropathogens and the antimicrobial resistance in elderly adult patients with urinary tract infection. BMC Infect Dis. 6:54.
- El-Mahdy R, Mostafa A, El-Kannishy G (2018). High- level aminoglycoside-resistant enterococci in hospital-acquired urinary tract infections in Mansoura, Egypt. Germs 8, 186-190.
- Flores-Mireles AL, Walker JN, Caparon M, et al (2015). Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269-284.
- Gajdács M, Ábrók M, Lázár A, et al (2020). The increasing relevance of gram-positive cocci in urinary tract infections: a 10-year analysis of their prevalence and resistance trends. Sci. Rep. 10, 1-11.
- Gharavi MJ, Zarei J, Roshani-Asl P, et al (2021). A comprehensive study of antimicrobial susceptibility pattern and extended spectrum beta-lactamase (ESBL) prevalence in bacteria isolated from urine samples. Sci. Reports 2021 111 11, 1–11.
- Gidamudi SS, Jadhav SA, Khanwelkar CC, et al (2015). View of antimicrobial utilization pattern of urinary tract infection in tertiary care hospital. Asian J. Pharm. Clin. Res. 8, 161–164
- Gupta K, Hooton TM, Naber KG, et al (2011). International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 52, 103–120
- Huttner A, Verhaegh EM, Harbarth S, et al (2015). Nitrofurantoin revisited: A systematic review and meta-analysis of controlled trials. J. Antimicrob. Chemother. 70, 2456–2464
- Kristianto Sugianli A, Ginting F, Lia Kusumawati R, et al (2017). Antimicrobial resistance in uropathogens and appropriateness of empirical treatment: A population-based surveillance study in Indonesia. J Antimicrob Chemother 72, 1469–1477
- Leekha S, Terrell CL, Edson RS (2011). General principles of antimicrobial therapy. Mayo Clin. Proc. 86, 156-167.
- Mansury D, Motamedifar M, Sarvari J, et al (2016). Antibiotic susceptibility pattern and identification of extended spectrum β-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae from Shiraz, Iran. Iran. J. Microbiol. 8, 55–61.
- Mechal T, Hussen S, Desta M (2021). Bacterial profile, antibiotic susceptibility pattern and associated factors among patients attending adult OPD at Hawassa University Comprehensive Specialized Hospital, Hawassa, Ethiopia. Infect. Drug Resist. 14, 99–110.
- Morales-Alvarez MC (2020). Nephrotoxicity of antimicrobials and antibiotics. Adv. Chronic Kidney Dis. 27, 31–37.
- Mulvey MA (2002). Adhesion and entry of uropathogenic Escherichia coli . Cell Microbiol.4:257–71.
- Najar MS, Saldanha CL, Banday KA (2009). Approach to urinary tract infections. Indian J. Nephrol. 19, 129- 139.
- Norafika, Arbianti N, Prihatiningsih S, Indriani DW, Indriati DW (2020). A retrospective cross-sectional study of urinary tract infections and prevalence of antibiotic resistant pathogens in patients with diabetes mellitus from a public hospital in Surabaya, Indonesia. Germs.1;10(4):157-166.
- Parathon H, Kuntaman K, Widiastoety TH et al (2017). Antimicrobial Resistance in South East Asia: Progress towards antimicrobial resistance containment and control in Indonesia. BMJ 358, 31– 35.
- Pratistha FSM, Sudhana IW, Adnyana, IWL (2018). Diagnosis cepat infeksi saluran kemih dengan menghitung jumlah leukosituria pada urinalisis metode flowcytometry sysmex Ux-2000 dengan baku emas kultur urin di RSUP Sanglah Denpasar. J. Penyakit Dalam Udayana 1, 52–56.
- Rajabnia M, Forghani MS, Hasani S, et al (2019). Prevalence and antibiotic resistance pattern of extended spectrum beta-lactamase producing Escherichia coli isolated from urinary tract infection. J. Ren. Inj. Prev. 8, 78–81.
- Ren W, Fang Y, Chen W, et al (2016). Patterns of etiology and antibiotic resistance of bacteria causing urinary tract infections in the Anhui Provincial Hospital, Int J Clin Exp Med. 9, 4515ï€4520.
- Rosana Y, Ocviyanti D, Akbar W (2020). Bacterial susceptibility patterns to cotrimoxazole in urinary tract infections of outpatients and inpatients in Jakarta, Indonesia. Med. J. Indones. 29, 316–21.
- Rowe TA, Juthani-Mehta, M (2013). Urinary tract infection in older adults. Aging health 9, 519–528.
- Seifu WD, Gebissa AD (2018). Prevalence and antibiotic susceptibility of Uropathogens from cases of urinary tract infections (UTI) in Shashemene referral hospital, Ethiopia. BMC Infect. Dis. 2018 181 18, 1–9.
- Setyorini H, Mardiana N, Tjempakasari A (2019). Risk Factors for urinary tract infection in hospitalized patients. Biomol. Heal. Sci. J. 2, 4-8.
- Severin JA, Mertaniasih NM, Kuntaman K, et al (2010). Molecular characterization of extended- spectrum β-lactamases in clinical Escherichia coli and Klebsiella pneumoniae isolates from Surabaya, Indonesia. J. Antimicrob. Chemother. 65, 465–469.
- Singh A, Jain S, Kumar D, et al (2015). Antimicrobial susceptibility pattern of extended-spectrum beta- lactamase producing Klebsiella pneumoniae clinical isolates in an Indian tertiary hospital. J. Res. Pharm. Pract. 4, 153-159.
- Terlizzi ME, Gribaudo G, Maffei ME (2017). UroPathogenic Escherichia coli (UPEC) infections: Virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 8, 1566, 1-23.
- Trevor AJ, Katzung BG, Kruidering-Hall M(Eds.) (2015). Katzung & Trevor's pharmacology: Examination & Board Review, 11e. McGrawHill, New York.
- Lema VM, Lema APV (2018). Sexual activity and the risk of acute uncomplicated urinary tract infection in premenopausal women: Implicationsfor reproductive health programming. Obstet. Gynecol. Int. J. 9, 49- 55.
- Wagenlehner FM, Lichtenstern C, Rolfes C, et al (2013). Diagnosis and management for urosepsis. Int. J. Urol. 20, 963-970.
- Yadav K, Prakash S (2017). Screening of ESBL Producing multidrug resistant E. coli from urinary tract infection suspected cases in Southern Terai of Nepal. J Infect Dis Diagn 2, 1-8.
References
Aswani SM, Chandrashekar U, Shivashankara K, Pruthvi B (2014). Clinical profile of urinary tract infections in diabetics and non-diabetics. Australas Med J. 29–34.
Bonadio M, Costarelli S, Morelli G, Tartaglia T (2006). The influence of diabetes mellitus on the spectrum of uropathogens and the antimicrobial resistance in elderly adult patients with urinary tract infection. BMC Infect Dis. 6:54.
El-Mahdy R, Mostafa A, El-Kannishy G (2018). High- level aminoglycoside-resistant enterococci in hospital-acquired urinary tract infections in Mansoura, Egypt. Germs 8, 186-190.
Flores-Mireles AL, Walker JN, Caparon M, et al (2015). Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269-284.
Gajdács M, Ábrók M, Lázár A, et al (2020). The increasing relevance of gram-positive cocci in urinary tract infections: a 10-year analysis of their prevalence and resistance trends. Sci. Rep. 10, 1-11.
Gharavi MJ, Zarei J, Roshani-Asl P, et al (2021). A comprehensive study of antimicrobial susceptibility pattern and extended spectrum beta-lactamase (ESBL) prevalence in bacteria isolated from urine samples. Sci. Reports 2021 111 11, 1–11.
Gidamudi SS, Jadhav SA, Khanwelkar CC, et al (2015). View of antimicrobial utilization pattern of urinary tract infection in tertiary care hospital. Asian J. Pharm. Clin. Res. 8, 161–164
Gupta K, Hooton TM, Naber KG, et al (2011). International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 52, 103–120
Huttner A, Verhaegh EM, Harbarth S, et al (2015). Nitrofurantoin revisited: A systematic review and meta-analysis of controlled trials. J. Antimicrob. Chemother. 70, 2456–2464
Kristianto Sugianli A, Ginting F, Lia Kusumawati R, et al (2017). Antimicrobial resistance in uropathogens and appropriateness of empirical treatment: A population-based surveillance study in Indonesia. J Antimicrob Chemother 72, 1469–1477
Leekha S, Terrell CL, Edson RS (2011). General principles of antimicrobial therapy. Mayo Clin. Proc. 86, 156-167.
Mansury D, Motamedifar M, Sarvari J, et al (2016). Antibiotic susceptibility pattern and identification of extended spectrum β-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae from Shiraz, Iran. Iran. J. Microbiol. 8, 55–61.
Mechal T, Hussen S, Desta M (2021). Bacterial profile, antibiotic susceptibility pattern and associated factors among patients attending adult OPD at Hawassa University Comprehensive Specialized Hospital, Hawassa, Ethiopia. Infect. Drug Resist. 14, 99–110.
Morales-Alvarez MC (2020). Nephrotoxicity of antimicrobials and antibiotics. Adv. Chronic Kidney Dis. 27, 31–37.
Mulvey MA (2002). Adhesion and entry of uropathogenic Escherichia coli . Cell Microbiol.4:257–71.
Najar MS, Saldanha CL, Banday KA (2009). Approach to urinary tract infections. Indian J. Nephrol. 19, 129- 139.
Norafika, Arbianti N, Prihatiningsih S, Indriani DW, Indriati DW (2020). A retrospective cross-sectional study of urinary tract infections and prevalence of antibiotic resistant pathogens in patients with diabetes mellitus from a public hospital in Surabaya, Indonesia. Germs.1;10(4):157-166.
Parathon H, Kuntaman K, Widiastoety TH et al (2017). Antimicrobial Resistance in South East Asia: Progress towards antimicrobial resistance containment and control in Indonesia. BMJ 358, 31– 35.
Pratistha FSM, Sudhana IW, Adnyana, IWL (2018). Diagnosis cepat infeksi saluran kemih dengan menghitung jumlah leukosituria pada urinalisis metode flowcytometry sysmex Ux-2000 dengan baku emas kultur urin di RSUP Sanglah Denpasar. J. Penyakit Dalam Udayana 1, 52–56.
Rajabnia M, Forghani MS, Hasani S, et al (2019). Prevalence and antibiotic resistance pattern of extended spectrum beta-lactamase producing Escherichia coli isolated from urinary tract infection. J. Ren. Inj. Prev. 8, 78–81.
Ren W, Fang Y, Chen W, et al (2016). Patterns of etiology and antibiotic resistance of bacteria causing urinary tract infections in the Anhui Provincial Hospital, Int J Clin Exp Med. 9, 4515ï€4520.
Rosana Y, Ocviyanti D, Akbar W (2020). Bacterial susceptibility patterns to cotrimoxazole in urinary tract infections of outpatients and inpatients in Jakarta, Indonesia. Med. J. Indones. 29, 316–21.
Rowe TA, Juthani-Mehta, M (2013). Urinary tract infection in older adults. Aging health 9, 519–528.
Seifu WD, Gebissa AD (2018). Prevalence and antibiotic susceptibility of Uropathogens from cases of urinary tract infections (UTI) in Shashemene referral hospital, Ethiopia. BMC Infect. Dis. 2018 181 18, 1–9.
Setyorini H, Mardiana N, Tjempakasari A (2019). Risk Factors for urinary tract infection in hospitalized patients. Biomol. Heal. Sci. J. 2, 4-8.
Severin JA, Mertaniasih NM, Kuntaman K, et al (2010). Molecular characterization of extended- spectrum β-lactamases in clinical Escherichia coli and Klebsiella pneumoniae isolates from Surabaya, Indonesia. J. Antimicrob. Chemother. 65, 465–469.
Singh A, Jain S, Kumar D, et al (2015). Antimicrobial susceptibility pattern of extended-spectrum beta- lactamase producing Klebsiella pneumoniae clinical isolates in an Indian tertiary hospital. J. Res. Pharm. Pract. 4, 153-159.
Terlizzi ME, Gribaudo G, Maffei ME (2017). UroPathogenic Escherichia coli (UPEC) infections: Virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 8, 1566, 1-23.
Trevor AJ, Katzung BG, Kruidering-Hall M(Eds.) (2015). Katzung & Trevor's pharmacology: Examination & Board Review, 11e. McGrawHill, New York.
Lema VM, Lema APV (2018). Sexual activity and the risk of acute uncomplicated urinary tract infection in premenopausal women: Implicationsfor reproductive health programming. Obstet. Gynecol. Int. J. 9, 49- 55.
Wagenlehner FM, Lichtenstern C, Rolfes C, et al (2013). Diagnosis and management for urosepsis. Int. J. Urol. 20, 963-970.
Yadav K, Prakash S (2017). Screening of ESBL Producing multidrug resistant E. coli from urinary tract infection suspected cases in Southern Terai of Nepal. J Infect Dis Diagn 2, 1-8.