Main Article Content

Abstract

This review examined the homeostasis of uric acid in human body and analyzed recent studies of the affecting major variables. Normal uric acid concentration in male is 3.5-7.2 mg/dL and in female is 2.6-6 mg/dL. Daily turnover of normal uric acid ranges from 498-1392 mg/day, miscible pool is 767-1650 mg, reabsorption is 8064 mg/day, renal excretion is 262-620 mg/day and intestine 186-313 mg/day. The dynamics of uric acid is influenced by factors of food, drink, age, history of disease, and genetic. High purine dietary consumption increases blood uric acid by 1-2 mg/dL, 213-290 g/day fructose drinks increases 0.52-1.7 mg/dL, 1.5 g/kgBW sucrose increases 0.61 mg/dL, and 10-20 ml/kgBW beer increases 0.50-0.92 mg/dL. The ABCG2 gene plays a role in bringing uric acid out of the body by 114.31-162.73 mg/dL, SLC2A9 of 5.43-20.17 mg/dL, and SLC22A12 of 5.77-6.71 mg/dL. The data described the homeostasis of uric acid and the magnitude of the impact of environmental (consumption of food, beverages, and lifestyle) and genetic factors. Understanding uric acid homeostasis and its disturbances is important in managing diseases as a consequence of hyperuricemia and hypouryscemia

Keywords

Homeostasis uric acid disturbances

Article Details

How to Cite
Karwur, F. F., & Pujiastuti, D. R. (2017). Review Article: URIC ACID HOMEOSTASIS AND DISTURBANCES. Folia Medica Indonesiana, 53(4), 292–298. https://doi.org/10.20473/fmi.v53i4.7164

References

  1. Ames BN, Cathcart R, Schwiers E, Hochstein P (1981). Uric acid provides an antioxidant defense in hu-mans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA 78, 6858–6862
  2. Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Ji Jin C, Srivastava S, Kitamura K, Hisatome I, Endou H, Sakurai H (2008). Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. The Journal of Biological Chemistry 283, 26834–26838
  3. Benedict JD, Forsham PH, Stetten JrD (1949). The me-tabolism of uric acid in the normal and gouty human studied with the aid of isotopic uric acid. J Biol Chem 181, 183–193
  4. Bibert S, Hess SK, Firsov D, Thorens B, Geering K, Horisberger J, Bonny O (2009). Mouse GLUT9: evi-dence for a urate uniporter. Am J Physiol Renal Phy-siol 297, 612–619
  5. Bowering J, Calloway DH, Margen S, Kaufmann NA (1970). Dietary protein level and uric acid meta-bolism in normal man. J Nutrition 100, 249–261
  6. Caulfield M, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, et al (2008). SLC2A9 is a high-capacity urate transporter in humans. Plos Med 5, 1509–1523
  7. Choi HK, Curhan G (2004). Beer, liquor, and wine consumption and serum uric acid level: the third national health and nutrition examination survey. Arthritis & Rheumatism (Arthritis Care & Research) 51, 1023–1029
  8. Choi HK, Liu S, Curhan G (2005). Intake of purine-rich foods, protein, and dairy products and relation-ship to serum levels of uric acid: the third nation-al health and nutrition examinaton survey. Arthritis & Rheumatism 52, 283–289
  9. Choi HK, Curhan G (2007). Coffe, tea, and caffeine consumption and serum uric acid level: the third national health and nutrition examination survey. Arthritis & Rheumatism (Arthritis Care & Research) 57, 816–821
  10. Clode PL, Sauders M, Maker G, Ludwig M, Atkins CA (2009). Uric acid deposits in symbiotic marine algae. Plant Cell and Environment 32, 170–17
  11. Cohen AM, Aberdroth RE, Hochstein P (1984). Inhi-bition of free radical-induced DNA damage by uric acid. Febs Letters 174, 147–150
  12. Culleton BF, Larson MG, Kannel WB, Levy D (1999). Serum uric acid and risk for cardiovascular disease and death: the Framinghan heart study. Ann Intern Med 131, 7–13
  13. Darmawan J (1988). Rheumatic conditions in the northern part of Central Java an epidemiological survey. Thesis. Universiteit Rotterdam
  14. Das M, Borah NC, Ghose M, Choudhury N (2014). reference ranges for serum uric acid among healthy assamese people. Biochemistry Research Interna-tional. http://dx.doi.org/10.1155/2014/171053
  15. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, et al (2002). Molecular identification of a renal urate–anion exchanger that regulates blood urate levels. Nature 417, 447–452
  16. Emmerson BT (1974). Effect of oral fructose on urate production. Ann Rheum Dis 33, 276–280
  17. Emmerson BT (1996). The management of gout. N Engl J Med 334, 445–51
  18. Fam AG (2002). Gout, Diet, and The Insulin Resistance Syndrome. J Rheumatol 29, 1350–1355
  19. Hak AE, Choi HK (2008). Menopause, postmenopausal hormone use and serum uric acid levels in us women – the third national health and nutrition examination survey. Arthritis Research & Therapy 10, R116, doi: 10.1186/ar2519
  20. Hauck OK, Scharnberg J, Escobar NM, Wanner G, Giavalisco P, Witte CP (2014). Uric acid accumu-lation in an arabidopsis urate oxidase mutant impairs seedling establishment by blocking peroxisome main-tenance. The Plant Cell 26, 3090–3100
  21. Heinig M, Johnson RJ (2006). Role of uric acid in hypertension, renal disease, and metabolic syndrome. Cleve Clin J Med 73,1059–1064
  22. Karwur F, Triandhini R, 2016. A story with three tellers (abstract). international symposium on Austronesian Diaspora. 18th to 23rd July 2016. The National Research Centre of Archeology in Collaboration with The Directorate Cultural Heritage and Museums, Nusa Dua, Bali. Indonesia
  23. Kobayashi T, Inokuchi T, Yamamoto A, Takahashi S, Ka T, Tsutsumi Z, Saito H, Moriwaki Y, Yamamoto T (2007). Effects of sucrose on plasma concentrations and urinary excretion of purine bases. Metabolism Clinical and Experimental 56, 439–443
  24. Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, et al (2009). Meta-analysis of 28.141 individuals identifies common variants within five new loci that influence uric acid concentrations. Plos Genetics 5, e1000504. doi: 10.1371/journal.pgen.1000504
  25. Lee IR, Yang L, Sebetso G, Allen R, Doan THN, Blundell R, Lui YL, Morrow CA, Fraser JA (2013). Characterization of the complete uric acid degradation pathway in the fungal pathogen cryptococcus neoformans. Plos ONE 8(5)
  26. Lehto S, Niskanen L, Ronnemaa T, Laakso M (1998). Serum uric acid is a strong predictor in patients with non-insulin-dependent diabetes mellitus. Stroke 29, 635–639
  27. Löffler W, Gröbner W, Zöllner N (1981). Nutrition and uric acid metabolism: plasma level, turnover excretion. Fortschritte der Urol. und Nephrol 16, 8–18
  28. Matsuo H, Yamamoto K, Nakaoka H, Nakayama A, Sakiyama M, et al (2015). Genome-wide Association Study of Clinically Defined Gout Identifies Multiple Risk Loci and Its Association with Clinical Subtypes. Ann Rheum Dis, 1–8. doi : 10.113/annrheumdis.2014-206191
  29. Moriwaki Y, Ka T, Takahashi S, Tsutsumi Z, Yamamo-to T (2006). Effect of beer ingestion on the plasma concentrations and urinary excretion of purine bases : one-month study. Nucleosides, Nucleotides, and Nucleic Acids 25, 1085–1085
  30. Nakayama A, Matsuo H, Takada T, Ichida K, Nakamura T, Ikebuchi Y, Ito K, Hosoya T, Kanai Y, Suzuki H, Shinomiya N (2011). ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucleosides Nucleotides and Nucleic Acids 30, 1091–1097
  31. Nugent CA, Tyler FH (1959). The renal excretion of uric acid in patients with gout and in nongouty subjects. J Clin Invest 38, 1890–1898
  32. Puig JG, Torres RJ, de Miguel E, Sánchez A, Bailén R, Banegas JR (2012). Uric acid excreton in healthy subjects: a nomogram to assess the mechanisms underlying purine metabolic disorders. Metabolism Clinical and Experimental 61, 512–518
  33. Reginato AM, Mount DB, Yang I, Choi HK (2012). The genetics of hyperuricemia and gout. Nat Rev Rheumatol 8, 610–621
  34. Rehman A, Naqvi SAJ (1980). Serum and Urinary Uric Acid in Relation to Age and Sex. JPMA 30, 242–244
  35. Richette P, Bardin T (2010). Gout. Lancet 375, 318–28
  36. Ryu KA, Kang HH, Kim SY, Yoo MK, Kim JS, Lee CH, Wie GA (2014). Comparison of nutrient intake and diet quality between hyperuricemia subjects and controls in Korea. Clin Nutr Res 3, 56–63
  37. Seegmiller JE, Grayzel AI, Laster L, Liddle L (1961). Uric acid production in gout. J Clin Invest 40, 1304–1314
  38. Scott JT, Holloway VP, Glass HI, Arnot RN (1969). Studies of uric acid pool size and turnover rate. Ann rheum Dis 28, 366–373
  39. Sorensen LB (1962). The pathogenesis of gout. Archives of Internal Medicine 109, 379–390
  40. Sorensen LB (1965). Role of the intestinal tract in the elimination of uric acid. Arthritis and Rheumatism 8, 694–706
  41. Sorensen LB (1980). Gout secondary to chronic renal disease: studies on urate metabolism. Annals of the Rheumatic Diseases 39, 424–430
  42. Teng GG, Tan CS, Santosa A, Saag KG, Yuan J, Koh W (2013). Serum urate levels and consumption of common beverages and alcohol among Chinese in Singapore. Arthritis Care & Research. 65, 1432–1440
  43. Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, et al (2008). SLC2A9 is a Newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nature Genetics 40, 437–442
  44. Vogels GD, van der drift C (1976). Degradation of purines and pyrimidines by microorganisms. Bacterio-logical Reviews 40, 403–468
  45. Wang DD, Sievenpiper JL, de Souza RJ, Chiavaroli L, Ha V, et al (2012). The effects of fructose intake on serum uric acid vary among controlled dietary trials. J. Nutrition 142, 916–923
  46. Webb R, Jeffries M, Sawalha AH (2009). Uric acid directly promotes human T-cell activation. Am J Med Sci 337(1), 23–27
  47. Witkowska K, Smith KM, Yao SYM, Ng AML, O'Neill D, Karpinski E, Young JD, Cheeseman CI (2012). Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses. Am J Physiol Renal Physiol 303, 527–539
  48. Yamamoto T, Moriwaki Y, Ka T, Takahasji S, Tsutsumi Z, Cheng J, Inokuchi T, Yamamoto A, Hada T (2004). Effect of sauna bathing and beer ingestion on plasma concentrations of purine bases. Metabolism 53(6), 772–776
  49. Yang B, Mo Z, Wu C, Yang H, Yang X, et al (2014). A genome-wide association study identifies common varians influencing serum uric acid concentrations in a Chinese population. BMC Medical Genomics 7, 10, doi: 10.1186/1755-8794-7-10