Main Article Content

Abstract

Brachial Plexus Injury (BPI) results in decreased motor function in upper extremity and leads to reduced hand grasping movement. Orthotic prehension is designed to create artificial grasp movements in paralyzed hand. This study was to compare grasp kinematic improvement between body powered and myoelectric prehension orthosis usage in patients with BPI. This study was a single group without control and post test with experimental study. The subjects of the study (n = 11) were brachial plexus injury patients with non-functional hand strength. Joint motion and angular velocity of metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joint of index finger were evaluated. There was an improvement in joint motion and angular velocity after both orthosis usage. Joint motion in MCP and PIP, Angular velocity in MCP were not significantly different between myoelectric and body powered and myoelectric prehension orthosis usage. PIP angular velocity improvement were better after body powered prehension orthosis usage (p= 0.03).In conclusion, body powered and myolectric prehension orthosis usage improved kinematic parameter of index finger's MCP and PIP joint. PIP angular velocity was better after body powered prehension orthosis usage.

Keywords

kinematic analysis brachial plexus injury body powered prehension orthosis myoelectric prehension orthosis

Article Details

How to Cite
Fundhi, K. A. P., Andriana, R. M., Masduchi, R. H., & Pawana, I. A. (2021). AMRTA-X: Grasp Kinematic Analysis during Myoelectric Prehension Orthosis and Body Powered Prehension Orthosis’s Usage on Brachial Plexus Injury Patients. Folia Medica Indonesiana, 57(1), 27–33. https://doi.org/10.20473/fmi.v57i1.9035

References

  1. Bain, G., Polites, N., Higgs, B., Heptinstall, R., & McGrath, A. (2015). The functional range of motion of the finger joints. The Journal of Hand Surgery (European Volume), 40E(4), 406-11.
  2. Bengston, K., & Shin, A. (2008). Orthoses for Brachial Plexus Injuries. Dalam J. Hsu, J. Michael, & J. Fisk (Penyunt.), AAOS Atlas of Orthoses and Assistive Devices (4th ed., hal. 249-259). Mosby.
  3. Bos, R., Haarman, C., Stortelder, T., Nizamis, K., Herder, J., Stienen, A., & Plettenberg, D. (2016). A structured overview of trends and technologies used in dynamic hand orthoses. Journal of NeuroEngineering and Rehabilitation, 13(62).
  4. Browns, D. W., & Roberts, K. (2008). Application of External Power in Brachial Plexus Injury Management: A Case Study. Fredericton,
  5. Canada: MEC '08 Measuring Success in Upper Limb Prosthetics.
  6. Carey, S., Lura, D., & Highsmith, J. (2015). Differences in myoelectric and body-powered upper limb prostheses: Systematic literature review. JRRD, 52(3).
  7. Charmant, J. (2017). Kinovea. Dipetik March 13, 2018, dari http://www.kinovea.org/en/forum/viewtopic.php?pid=3796#p3796
  8. Chen, C.-H., Azari, D., Hu, Y. H., Lindstrom, M., Thelen, Dartyl, & Yen, T. (2015). The Accuracy of Conventional 2D Video for Quantifying Upper Limb Kinematics in Repetitive Motion Occupational Tasks. Ergonomics, 58(12), 2057-2066.
  9. Chen, F. C., Appendino, S., Battezzato, A., Favetto, A., Mousavi, M., & Pescarmona, F. (2013). Constraint Study for a Hand Exoskeleton: Human Hand Kinematics and Dynamics. Journal of Robotics. doi:http://dx.doi.org/10.1155/2013/910961
  10. Cordella, F., Zollo, L., Salerno, A., Accoto, D., Guglielmelli, E., & Siciliano, B. (2014). Human Hand Motion Analysis and Synthesis of Optimal Power Grasps for a Robotic Hand. International Journal of Advanced Robotic Systems, 11(37).
  11. Dorenfeld, E., Wolf, R., & Zeveska, S. (2013). Design of Powered Hand Orthosis. Worcester: Gordon Library Worcester Polytechnic Institute.
  12. Duncan, S., Saracevic, C., & Kakinoki, R. (2013). Biomechanics of the Hand. Hand Clin, 29, 483-92.
  13. Fryer, C. (1992). Upper-Limb Prosthetics: Harnessing and Controls for Body-Powered Devices. Dalam Bowker, & Michael (Penyunt.), Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles (2nd ed.). Rosemont, Illinois: American Academy of Orthopedic Surgeon.
  14. Fundhi, K. A., Pawana, I., & Masduchi, R. (2016). The Effect of Powered Dynamic Hand Orthosis (PDHO) Usage to Grip Strength and Hand Function on Brachial Plexus Injury's Patient Affected Hand. Pertemuan Ilmiah Tahunan Perdosri. Jakarta.
  15. Geethanjali, P. (2016). Myoelectric control of prosthetic hands: state-of-the-art review. Medical Devices: Evidence and Research, 9, 247-255.
  16. Goebl, W., & Palmer, C. (2013). Temporal Control and Hand Movement Efficiency in Skilled Music Performance. PLoS ONE. doi:10.1371/journal.pone.0050901
  17. Grigg, J., Haakonssen, E., Rathbone, E., Orr, R., & Keogh, J. (2017). The validity and intra-tester reliability of markerless motion capture to analyse kinematics of the BMX Supercross gate Start. Sports Biomechanics. doi:10.1080/14763141.2017.1353129
  18. Gustus, A., Stillfried, G., Visser, J., Jorntell, H., & van der Smagt, P. (2012). Human hand modelling: kinematics, dynamics, applications. Biol Cybern, 106(741), 741-55.
  19. Hapsari, R., Wardhani, I., & Pawana, I. P. (2017). Perbandingan Efek Segera Pemakaian Hemisling Dan Ortosis Bahu Fungsional Terhadap Pengurangan Subluksasi Bahu Pada Penderita Cedera Pleksus Brakialis. Surabaya: Departemen Ilmu Kedokteran Fisik dan Rehabilitasi Fakultas Kedokteran Universitas Airlangga RSUD dr. Soetomo.
  20. Hayashi, H., Shimizu, H., Okomura, S., & Miwa, K. (2014). Necessary Metacarpophalangeal Joints Range of Motion to Maintain Hand Function. Hong Kong Journal of Occupational Therapy, 24, 51-55.
  21. Hitec Multiplex. (2018). hitecrcd.com. Dipetik 5 10, 2018, dari http://hitecrcd.com/products/servos/sport-servos/analog-sport-servos/hs-645mg-high-torque-metal-gear-servo/product
  22. Johnson, S. S., & Mansfield, E. (2014). Prosthetic training: upper limb. Phys Med Rehabil Clin N Am, 25(1), 133-151.
  23. Kang, & Wolfe. (2011). Traumatic Brachial Plexus Injuries. Dalam Skirven (Penyunt.), Rehabilitation of The Hand and Upper Extremity (6th ed., hal. 749). Philadelphia: Elsevier Mosby.
  24. Kelly, & Leonard. (2012). Rehabilitation concepts for adult brachial plexus injuries. Dalam Chung, & Yang (Penyunt.), Practical Management of Pediatric and Adult Brachial Plexus Palsies. Edinburgh: Elsevier.
  25. Lenheis, H. (1968). Application External Power in Orthotics. Orthotics and Prosthetics , 22(3), 34-45.
  26. Lunsford, T., & DiBello, T. (2008). Principles and components of upper limb orthoses. Dalam Hsu, Michael, Fisk, J. Hsu, J. Michael, & J. Fisk (Penyunt.), AAOS Atlas of Orthoses and Assistive Device (4th ed.). New York: Elsevier.
  27. Michael, J., & Nunley, J. (1992). Special Considerations: Brachial Plexus Injuries: Surgical Advances and Orthotic/Prosthetic Management. Dalam Bowker (Penyunt.), Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles. Rosemont: American Academy of Orthopedic Surgeons.
  28. Mohamed, A. (2015). A Novice Guide towards Human Motion Analysis and Understanding. arXiv. Diambil kembali dari )http://search.arxiv.org:8081/paper.jsp?r=1509.01074&qid=1518441717991bas_nCnN_1754697412&qs=A+Novice+Guide+towards+Human+Motion+Analysis+and+Understanding
  29. Pawana, I. P. (2016). Aplikasi Instrumentasi dalam Kedokteran Fisik dan Rehabilitasi. Surabaya: Departemen Ilmu Kedokteran Fisik dan Rehabilitasi FK Unair - RS dr. Soetomo.
  30. Puig-Divi, A., Padullés-Riu, J., Busquets-Faciaben, A., Padullés-Chand, X., Escalona-Marfil, C., & Marcos-Ruiz, D. (2017). Validity and Reliability of the Kinovea Program in Obtaining Angular and Distance Dimensions. preprints. doi:10.20944/preprints201710.0042.v1
  31. Rachmawati, S., Subagyo, Arfianti, L., & Wardhani, I. (2016). Faktor yang Mempengaruhi Perbaikan Motorik Pasca Pembedahan Rekonstruksi Functioning Free Muscle Transfer pada Pasien Cedera Pleksus Brakhialis Akibat Trauma. Hasil Penelitian. Surabaya: Departemen Ilmu Kedokteran Fisik dan Rehabilitasi FK Universitas Airlangga - RSUD dr. Soetomo Surabaya.
  32. Saharan, L., Sharma, A., Andrade, M., Baughman, R., & Tadesse, Y. (2017). Design of a 3D Printed Lightweight Orthotic Device Based on Twisted and Coiled Polymer Muscle: iGrab Hand Orthosis. Oregon: Society of Photo-Optical Instrumentation Engineers (SPIE).
  33. Sancho-Bru, J., Mora, M., Leon, B., Pérez-Gonzáleza, A., Iserte, J., & Morales, A. (2014). Grasp modelling with a biomechanical model of the Hand. Computer Methods in Biomechanics and Biomedical, 17(4), 297-310.
  34. Slack, M., & Berbrayer, D. (1992). A Myoelectrically Controlled Wrist-Hand Orthosis for Brachial Plexus Injury. Journal of Prosthetics and Orthotics, 4(3), 171.
  35. Smania, N., Berto, G., Marchina, L., Melotti, C., Midiri, A., & Roncari, L. (2012). Rehabilitation of Brachial Plexus Injuries in adults and children. Eur J Phys Med, 48, 483-506.
  36. Suroto, H. (2011). How to Manage Adult Brachial Plexus Injuries? Current Diagnosis and Comprehensive Treatment of Brachial Plexus Injury. Surabaya: 1st National Symposium.
  37. Suroto, H. (2015). Evaluation of nerve procedures and FFMT in adult BPI - the Surabaya experience. 10th Congress of the Asia-Pacific Federation of Societies of Surgery of the Hand and the 6th Congress of the Asia-Pacific Federation. BMC Proceedings.
  38. Tan, J. (1998). Orthoses. Dalam S. Horn (Penyunt.), Practical Manual of Physical MEdicine and Rehabilitation: Diagnostics, Therapeutics and Basic Problems (hal. 210). Missouri: Mosby.
  39. Wardhani, I., Kurniawati, P., & Qorib, F. (2011). Peran Rehabilitasi Dalam Penanganan Pre dan Paska Operasi Lesi Pleksus Brakhialis. Current Diagnosis and Comprehensive Treatment of Brachial Plexus Injury. Surabaya: 1st National Symposium.
  40. WHO. (2001). International classification of functioning, disability and health : ICF. Geneva: WHO.