Growth Response of Porphyridium sp. Culture on Glass and Plastic Container in Laboratory Scale
Downloads
Utilization of Porphyridium sp. began to be developed as an anticancer, anti-inflammatory, antibacterial, antifungal, and production of biogas and biodiesel so that necessary to carry out culture activities for ensure continuity of Porphyridium sp. This study aims to determine the type of culture container that showed the best growth response of Porphyridium sp. with the highest biomass. The stages in this research were preparation of containers and media sterilization, making diatom fertilizers and agar media, Culture of Porphyridium sp. on agar media, Culture of Porphyridium sp. in the test tube, and Culture of Porphyridium sp. in glass and plastic containers. The results showed that the growth response of Porphyridium sp. that cultured in glass containers (18,9 ± 0,21 x 105 cells/mL) was higher than plastic (15.57 ± 0,03 x 105 cells/ml).
Afriza, Z. G. Diansyah & A.I.S Purwiyanto. 2015. The effects of giving urea fertilizer (CH4N2O) with different doses on cell density and growth rate of Porphyridium sp. in phytoplankton culture on laboratory scale. Maspari J. 7(2). p 33–40.
Berge, T. N. Daugbjerg & P. Juel. 2012. Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH. Harmful Algae. (20). p 101–110.
Bernard, O. & B. Remond. 2012. Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresources Technology. 123. p 520–527.
Csogor, Z. B. Kiessling. I. Perner. P. Fleck & C. Posten. 2001. Growth and product formation of Porphyridium purpureum. Journal Applied Phycology (13). p 317–324.
Das, P. S. Sarah & J. Philip. 2011. Two phase microalgae growth in the open system for enhanced lipid productivity. Renewable Energy. 36(9). p 2524–2528.
Durmaz, Y. M. Monteiro. N. Bandarra. S. Gokpinar & O. Isik. 2007. The effect of low temperature on fatty acid composition and tocopherols of the red microalga, Porphyridium cruentum. Journal Applied Phycology (19). p 223–227.
Erlina, A. S. Amini. H. Endrawati & M. Zainuri. 2004. Kajian nutritif phytoplankton pakan alami pada sistem kultivasi massal. Jurnal Ilmu Kelautan 9(4). p 206–210.
Falaise, C. C. François. M. Travers. B. Morga. J. Haure. R. Tremblay. & J. Mouget. 2016. Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Marine Drugs 14(159). p 1–27.
Guihéneuf, F. & D.B. Stengel. 2015. Towards the biorefinery concept : Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal Research (10). p 152–163.
Jannah, M. M.F. Ulkhaq. M.H. Azhar. Suciyono & W. Soemarjati. 2019. Growth performance of laboratory-scale Chaetoceros calcitrans in different containers. In IOP Conference Series Earth and Environment Science (pp. 3–8).
Kathiresan, S. R. Sarada. S. Bhattacharya. & G.A. Ravishankar. 2007. Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum. Biotechnology Bioengineering 96(3). p 456–463.
Kawaroe, M. J. Hwangbo. D. Augustine. & H.A. Putra .2015. Comparison of density, specific growth rate, Nannochloropsis sp. cultivated in open raceway pond and photobioreactor. AACL Bioflux. 8(5). p 740–750.
Kim, H. M. C.H. Oh. & H. Bae. 2017. Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production. Bioresources Technology 233. p 44–50.
Li-beisson, Y. & Y. Nakamura. 2016. Lipids in plant and algae development. Springer International Publising Switzerland. 524p.
Li, T. J. Xu. H. Wu. P. Jiang. Z. Chen. & W. Xiang. 2019. Growth and biochemical composition of Porphyridium pupureum SCS-02 under different nitrogen concentrations. Marine Drugs. 17(124). p 1-16.
Markou, G. & E. Nerantzis. 2013. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances 31(8). p 1532–1542.
Mata, T. M. A. Martins A. & N.S. Caetano. 2009. Microalgae for biodiesel production and other applications : A review. Renewable Sustainable Energy Review 14(1). p 217-232.
Mudimu, O. N. Rybalka. T. Bauersachs. J. Born. T. Friedl. & R. Schulz. 2014. Biotechnological screening of microalgal and cyanobacterial strains for biogas production and antibacterial and antifungal Effects. Metabolites. (4). p 373–393.
Oh, S. H., J.G. Han. Y. Kim. J. H. Ha. S. S. Kim. M.H. Jeong. H.S. Jeong. N.Y. Kim. J.S. Cho. W.B. Yoon. S.Y. Lee. D.H. Kang & H. Y. Lee. 2009. Lipid production in Porphyridium cruentum grown under different culture conditions. Journal Bioscience Bioengineering 108(5). p 429–434.
Paes, C. R. P. S., G.R. Faria. N.A.B. Tinoco. D.J.F.A. Castro. E. Barbarino & S.O. Lourenço. 2016. Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Latin American Journal of Aquatic Research 44(2). p 275–292.
Patil, V., T. Kallqvist. E. Olsen. G. Vogt & H.R. Gislerí¸d. 2007. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International (15). p 1–9.
Razaghi, A., A. Godhe & E. Albers. 2014. Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum. Central Europe Journal of. Biology 9(2). p 156–162.
Safi, C., M. Charton. O. Pignolet. P.Y. Pontalier & C. Vaca-Garcia. 2013. Evaluation of the protein quality of Porphyridium cruentum. Journal Applied Phycology 25(2). p 497–501.
Tannin-spitz, T., M. Bergman. D. Van-Moppes. S. Grossman & S.M. Arad. 2005. Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. Journal Applied Phycology (17). p 215–222.
Velea, S., L. Ilie & L. Filipescu. 2011. Optimization of Porphyridium purpureum culture growth using two variables experimental design : light and sodium. UPB Science Bulletin 73(4). p 81–94.
Wahyuni, N., E.D. Masithah. W. Soemarjati & M.F. Ulkhaq. 2018. Pola pertumbuhan mikroalga Spirulina sp. skala laboratorium yang dikultur menggunakan wadah yang berbeda. Majalah Ilmiah Bahari Jogja. 16(2). p 89–97.
You, T., & S.M. Barnett. 2004. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochemical Engineering Journal (19): 251–258.
1. The copyright of this journal belongs to the Editorial Board, based on the author's consent, while the moral rights of the publication belong to the author(s).
2. The formal legal aspect of journal accessibility refers to the same Creative Common Attribution + Noncommercial + ShareAlike (CC BY-NC-SA), implying that publication can be used for non-commercial purposes in its original form.
3. Every publication (printed/electronic) is open access for educational, research and library purposes. In addition to the objectives stated above, the editorial board is not responsible for copyright infringement