The Evaluation of the Addition of Commercial Yeast with β -Glucan Content in Feed on the Immunity of Snakehead Fish Channa striata Infected by Aeromonas hydrophila Bacteria
Downloads
Snakehead fish Channa striata is a high commercial freshwater fish commodity. It has the potential as a pharmaceutical ingredient. Intensive snakehead fish cultivation starts to experience a problem, namely Motile Aeromonas Septicemia (MAS) caused by Aeromonas hydrophila. The purpose of this study is to evaluate the effect of the addition of commercial yeast in feed to improve snakehead fish immunity. This study was designed with a completely randomized design (CRD) with 5 treatments with 3 replications (reared in the net) and 6 treatments with 3 replications (reared in the aquarium). The treatments were K (feed without yeast), F5 (feed with the addition of 5 g/kg of cake yeast), R3 (feed with the addition of 3 g/kg of tempeh yeast, R5(feed with the addition of 5 g/kgof tempeh yeast), and R7 (feed with the addition of 7 g/kg of tempeh yeast). The results show that the survival rate after 30 days is 88.89- 92.22%. The best treatment after A. hydrophila infection was found in fish fed with 3 g/kg oftempehyeast with a survival rate of 56.67%, total erythrocytes of 4.07x 106 mm-3 cells, hemoglobin of 7.40 g% of total leukocytes 4.97x 104 mm-3 cells and phagocytic activity of 33.67. In conclusion, the addition of tempeh yeast at a dose of 3 g/kg could be used as an alternative to prevent the effect of A. hydrophila pathogen infection in snakehead fish.
Abdel-Tawwab, M., Abdel-Rahman, A.M. and Ismael, N.E., 2008. Evaluation of commercial live bakers' yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture, 280(1-4), pp.185-189. https://doi.o rg/10.1016/j.aquaculture.2008.03.055
Adloo M.N., Soltanian, S., Hafeziyeh, M. and Ghadimi, N., 2015. Effects of long term dietary administration of β-Glucan on the growth, survival and some blood parameters of striped catfish, Pangasianodon hypophthalmus (Siluriformes: Pangasiidae). Iranian Journal of Ichthiology, 2(3), pp.194-200. http:/ /dx.doi.org/10.22034/iji.v2i3.75
Amin, M., 2016. Evaluasi ragi bir (Saccharomyces cerevisiae) sebagai sumber protein dan imunostimulan pada benih dan induk ikan nila (Oreochromis niloticus) [Disertasi]. Bogor (ID): Institut Pertanian Bogor.
Anderson, D.P. and Siwicki, A.K., 1995. Basic hematology and serology for fish health programs. Fish Health Section, Asian Fisheries Society, pp.185-202.
Blaxhall, P.C. and Daisley, K.W., 1973. Routine haematological methods for use with fish blood. Journal of fish biology, 5(6), pp.771-781. https://d oi.org/10.1111/j.1095-8649.1973.t
Chasanah, E., Nurilmala, M., Purnamasari, A.R. and Fithriani, D., 2015. Komposisi kimia, kadar albumin dan bioaktivitas ekstrak protein ikan gabus (Channa striata) alam dan hasil budidaya. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 10(2), pp.123-132. http://dx.doi.org/10.15578/jpbkp.v10i2.364
Domenico, J.D., Canova, R., Soveral, L.D.F., Nied, C.O., Costa, M.M., Frandoloso, R. and Kreutz, L.C., 2017. Immunomodulatory effects of dietary β-glucan in silver catfish (Rhamdia quelen). Pesquisa Veterinária Brasileira, 37(1), pp.73-78. https://pesquisa.bvsalud.org/po rtal/resource/pt/biblio-846421
Dwinanti, S.H., Afriani, S. and Sasanti, A.D., 2019. Pemanfaatan vitamin C untuk meningkatkan performa imunitas benis Ikan Gabus (Channa striata). J. Akuakultur Rawa Indonesia, 7(1), pp.67-76. https://c ore.ac.uk/download/pdf/267822723.pdf
FAO Food and Agriculture Organization, 2018. The State of World Fisheries and Aquaculture Meeting The Sustainable Development Goals. Rome:Food and Agriculture Organization.
Hanif, A., Bakopoulos, V. and Dimitriadis, G.J., 2004. Maternal transfer of humoral specific and non-specific immune parameters to sea bream (Sparus aurata) larvae. Fish & shellfish immunology, 17(5), pp.411-435. https://doi.org/10.1016/j.fsi.2
Harikrishnan, R., Rani, M.N. and Balasundaram, C., 2003. Hematological and biochemical parameters in common carp, Cyprinus carpio, following herbal treatment for Aeromonas hydrophila infection. Aquaculture, 221(1-4), pp.41-50. https://doi.org /10.1016/S0044-8486(03)00023-1
KKP BPBAT Kementrian Kelautan dan Perikanan Balai Perikanan Budidaya Air Tawar Mandiangin, 2014. Naskah Akademik Ikan Gabus Haruan (Channa striata Bloch 1793) Hasil Domestikasi (ID). Mandiangin : Direktorat Jendral Perikanan Budidaya. p.67.
Kumar, P., Jain, K.K., Munilkumar, S. and Chalal, R.S., 2013. Beta Glucan : a valuable nutraceutical for promoting health in aquaculture (short review). African Journal of Basic & Applied Sciences, 5(5), pp.220-227. 10.5829/idosi.ajbas.20 13.5.5.7625
Kumaresan, V., Bhatt, P., Ganesh, M.R., Harikrishnan, R., Arasu, M., Al-Dhabi, N.A., Pasupuleti, M., Marimuthu, K. and Arockiaraj, J., 2015. A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica. Molecular Immunology, 68(2), pp.421-433. https://doi.org/10.1016/j.molimm.2015.10.001
Kumari, J. and Sahoo, P.K., 2006. Dietary β"1, 3 glucan potentiates innate immunity and disease resistance of Asian catfish, Clarias batrachus (L.). Journal of Fish Diseases, 29(2), pp.95-101. https://doi.org/10.1111 /j.1365-2761.2006.00691.x
Kusumaningrum, H.D., Nasution, S., Kusumaningtyas, E. and Faridah, D.N., 2018. Lysozyme from Chicken Egg White as an Antibacterial Agent. Wartazoa, 28(4), pp.175-188. https://dx.doi.org/10.14334/wartazoa.v2814.1882
Lagler, K.F., Bardach, J.E., Miller, R.R. and Passino, D.R.M., 1977. Ichthyology, Translated from New York by John Willey and Sons, Inc, p.506.
Listyanto, N. and Andriyanto, S., 2009. Ikan gabus (Channa striata) manfaat pengembangan dan alternatif teknik budidayanya. Media Akuakultur, 4(1), pp.18-25. http://dx.doi.org/10.15578/ma.4.1.2009.18-25
Manoppo, H., Tumbol, R.A. and Manurung, U.N., 2015. Incorporation of baker's yeast cells as immunostimulant in feed enhance resistance of nile tilapia to Aeromonas hydrophila. International Journal of PharmTech Research, 8(5), pp.797-802.
Misra, C.K., Das, B.K., Mukherjee, S.C. and Pattnaik, P., 2006. Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture, 255(1-4), pp.82-94. https://doi.org/10.1016/j.aquaculture.2005.12.009
Moyle, P.B. and Cech, J.J., 2004. Fishes: an introduction to ichthyology (No. 597 MOY).
Mustafa, A., Widodo, M.A. and Kristianto, Y., 2012. Albumin and zinc content of snakehead fish (Channa striata) extract and its role in health. IEESE International Journal of Science and Technology, 1(2), pp.1-8. http://ww w.ieese.org/archieves/vol1n2.1.pdf
Olga, O., 2012. Patogenisitas Bakteri Aeromonas Hydrophila Asb01 Pada Ikan Gabus (Ophicephalus Striatus). Sains Akuatik: Jurnal Ilmiah Ilmu-Ilmu Perairan, 14(1), pp.33-39. http://jurnalnasional.ump.ac.id/index.php/AKUATIK/article/view/377
Ortuño, J., Cuesta, A., RodrıÌguez, A., Esteban, M.A. and Meseguer, J., 2002. Oral administration of yeast, Saccharomyces cerevisiae, enhances the cellular innate immune response of gilthead seabream (Sparus aurata L.). Veterinary immunology and immunopathology, 85(1-2), pp.41-50. https://doi.org/10.1016/S0165 -2427(01)00406-8
Pal, D., Joardar, S.N. and Roy, B., 2007. Immunostimulatory effects of a yeast (Saccharomyces cerevisiae) cell wall feed supplement on rohu (Labeo rohita), an Indian major carp. The Israeli Journal of Aquaculture - Bamidgeh, 59(3), pp.175-181. http://hdl.handle.net/ 10524/19223
Paulsen, S.M., Lunde, H., Engstad, R.E. and Robertsen, B., 2003. In vivo effects of β-glucan and LPS on regulation of lysozyme activity and mRNA expression in Atlantic salmon (Salmo salar L.). Fish & Shellfish Immunology, 14(1), pp.39-54. https: //doi.org/10.1006/fsim.2002.0416
Pilarski, F., de Oliveira, C.A.F., de Souza, F.P.B.D. and Zanuzzo, F.S., 2017. Different β-glucans improve the growth performance and bacterial resistance in Nile tilapia. Fish & shellfish immunology, 70, pp.25-29. https://doi.org/10.1016/j.fsi.2017.06.059
Purwijantiningsih, E., Dewanti-Hariyadi, R. Nurwitri, C.C. and Istiana, 2005. Penghambatan Produksi Aflatoksin dari Aspergillus flavus oleh Kapang dan Khamir yang Diisolasi dari Ragi Tempe. Biota: Jurnal Ilmiah Ilmu-Ilmu Hayati, 10(3), pp.146-153. https://doi.org/10.24002/biota.v10i3.2874
Ray, S.D., Roy, D., Pal, S. and Homechaudhuri, S., 2016. Effects of beta glucan as immunostimulant on Labeo rohita challenged with a bacterial pathogen Aeromonas hydrophila. International Journal of Innovative Studies in Aquatic Biology and Fisheries, 2(5), pp.10-19. https:/ /dx.doi.org/10.20431/2454-7670.0 205003
Sajeevan, T.P., Philip, R. and Singh, I.B., 2009. Dose/frequency: a critical factor in the administration of glucan as immunostimulant to Indian white shrimp Fenneropenaeus indicus. Aquaculture, 287(3-4), pp.248-252. https://doi.org/10.1016/j.aquaculture.2008.10.045
Sakai, M., 1999. Current research status of fish immunostimulants. Aquaculture, 172(1-2), pp.63-92. https://doi.org/10.1016/S0044-84 86(98)00436-0
Sirimanapong, W., Thompson, K.D., Ooi, E.L., Bekaert, M., Collet, B., Taggart, J.B., Bron, J.E., Green, D.M., Shinn, A.P., Adams, A. and Leaver, M.J., 2015. The effect of feeding β-glucan to Pangasianodon hypophthalmus on immune gene expression and resistance to Edwardsierla ictaluri. Fish & Shellfish Immunology, 47(1), pp.595-605. https://doi.org/10.101 6/j.fsi.2015.09.042
Stier, H., Ebbeskotte, V. and Gruenwald, J., 2014. Immune-modulatory effects of dietary Yeast Beta-1, 3/1, 6-D-glucan. Nutrition journal, 13(1), pp.1-9. https://doi.org/10.1186/14 75-2891-13-38
Uribe, C., Folch, H., Enriquez, R. and Moran, G., 2011. Innate and adaptive immunity in teleost fish: a review. Veterinarni Medicina, 56(10), pp.486–503. https://doi.or g/10.17221/3294-VETMED
Vechklang, K., Boonanuntanasarn, S., Ponchunchoovong, S., Pirarat, N. and Wanapu, C., 2011. The potential for rice wine residual as an alternative protein source in a practical diet for Nile tilapia (Oreochromis niloticus) at the juvenile stage. Aquaculture Nutrition, 17(6), pp.685-694. https: //doi.org/10.1111/j.1365-2095.20 11.00870.x
Vetvicka, V. and Vetvickova, J., 2016. comparison of immunological effects of commercially available β-glucans: Part III. Int Clin Pathol J, 2(4), p.00046. http://dx.doi.org/10 .15406/icpjl.2016.02.00046
Wahyu, 2015. Respon fisiologis juvenil ikan gabus Channa striata pada transposrtasi sistem tertutup [Tesis]. Bogor (ID): Institut Pertanian Bogor.
Wedemeyer, G.A. and Yasutake, W.T., 1977. Clinical methods for the assessment of the effects of environmental stress on fish health (Vol. 89). Department of the Interior, Fish and Wildlife Service, pp.1-17.
Whittington, R., Lim, C. and Klesius, P.H., 2005. Effect of dietary β-glucan levels on the growth response and efficacy of Streptococcus iniae vaccine in Nile tilapia, Oreochromis niloticus. Aquaculture, 248(1-4), pp.217-225. https://doi.org/10.1016/j.aquaculture.2005.04.013
1. The copyright of this journal belongs to the Editorial Board, based on the author's consent, while the moral rights of the publication belong to the author(s).
2. The formal legal aspect of journal accessibility refers to the same Creative Common Attribution + Noncommercial + ShareAlike (CC BY-NC-SA), implying that publication can be used for non-commercial purposes in its original form.
3. Every publication (printed/electronic) is open access for educational, research and library purposes. In addition to the objectives stated above, the editorial board is not responsible for copyright infringement