Aquafeed Biofloatation through Mycelial Hydrophobic Coating
Downloads
Aquafeed biofloatation through tempeh mould fermentation on sinking aquafeeds produces water-floating property, an alternative to the expensive extrusion technique. However, the role of the fungal mycelium in this biofloatation remains unclear. This study aimed to investigate the role of surface mycelium of the fermented feed in the buoyancy. Commercial sinking feed was fermented using a tempeh starter at ambient temperature (28–33 °C) for 48 h. Freshly fermented feeds were produced, some of which were peeled to remove the surface mycelium, while the others were left intact. After 24-h oven-drying at 50 °C, physical tests were done on the peeled and unpeeled fermented feeds, plus unfermented feed as a negative control. Results showed that the unpeeled fermented feed had the highest floatability (48% at the 60th minute), and continued floating until the 120th minute with 36% floatability. In contrast, the unfermented feed did not float at all, while the peeled fermented feed sank within the first 2 minutes. Only the unpeeled fermented feed showed hydrophobic characteristics (> 90° contact angle and 20.16 s water absorption time). Thus, the hydrophobic surface mycelium might prevent rapid water infiltration into the fermented feed matrix, enabling the intact fermented feed to float longer.
Aas, T.S., Sixten, H.J., Hillestad, M., Sveier, H., Ytrestí¸yl, T., Hatlen, B. and í…sgård, T., 2017. Measurement of gastrointestinal passage rate in Atlantic salmon (Salmo salar) fed dry or soaked feed. Aquaculture Reports, 8, pp. 49–57. https://doi.org/10.1016/j.aqrep.2017.10.001
Abro, R., Moazzami, A.A., Lindberg, J.E. and Lundh, T., 2014. Metabolic insights in Arctic charr (Salvelinus alpinus) fed with zygomycetes and fish meal diets as assessed in liver using nuclear magnetic resonance (NMR) spectroscopy. International Aquatic Research, 6(63), pp. 1–11. https://doi.org/10.1007/s40071-014-0063-9
Ahmed, N., 2015. Field survey report on technical, economic and social constraints to aquafeed production and management in Bangladesh. In: Hasan, M.R. and Arthur, J. R. (Eds). Aquaculture Seed and Feed Production and Management in Bangladesh - Status, Issues and Constraints. FAO, Rome, pp. 57–78.
Batsaikhan, M., 2017. Protein-rich fungal biomass cultivation on agro-industrial wastes/residues for aquaculture feed production with simultaneous organic removal. M. S. Thesis. University of HawaiÊ»i at MÄnoa, Honolulu.
Cantabrana, I., Perise, R., and Hernández, I., 2015. Uses of Rhizopus oryzae in the kitchen. International Journal of Gastronomy and Food Science, 2(2), pp. 103–111. https://doi.org/10.1016/j.ijgfs.2015.01.001
Chau, H.W., Goh, Y.K., Vujanovic V., and Si, B.C., 2012. Wetting properties of fungi mycelium alter soil infiltration and soil water repellency in a γ-sterilized wettable and repellent soil. Fungal Biology, 116(12), pp. 1212–1218. https://doi.org/10.1016/j.funbio.2012.10.004
Chen, Y.C., Hsieh, S.L., and Hu, C.Y., 2020. Effects of red-bean tempeh with various strains of Rhizopus on GABA content and cortisol level in zebrafish. Microorganisms, 8(9), p. 1330. https://doi.org/10.3390/microorganisms8091330
Da Silva, R.C.L., Júnior, C.A., Oliveira Neves, J.R., Araujo, R., and Teixeira, V.M.P., 2018. Controlling wettability of the each side of the PLA fabric through orientation of the working gases (O2 and CH4) during cold plasma treatment. Material Research, 21, pp. 1–8. https://doi.org/10.1590/1980-5373-MR-2016-0415
Dahal, M.P., 2018. Status of aquaculture feed and feed ingredient production and utilization in Nepal. In: Asia-Pacific Fishery Commission (Ed) Regional Consultation Promoting Responsible Production and Use of Feed and Feed Ingredients for Sustainable Growth of Aquaculture in Asia-Pacific. FAO, Cebu, Philippines, pp. 86–100.
Debnath, D., Yengkokpam, S., Das, B.K., and Mahanty, B.P., 2020. Next generation fish feeds for sustainable aquaculture. In: Ninawe, A.S., Dhanze, J.R., Dhanze, R., and Indulkar, S.T. (Eds). Fish Nutrition and Its Relevance to Human Health. CRC Press, London. 1st Edition, pp. 66–197. https://doi.org/10.1201/9781003107583
Feofilova, E.P., 2010. The fungal cell wall: Modern concepts of its composition and biological function. Microbiology, 79(6), pp. 711–720. https://doi.org/10.1134/S0026261710060019
Goldsmith, G.R., Bentley, L.P., Shenkin, A., Salinas, N., Blonder, B., Martin, R.E., Castro-Ccossco, R., Chambi-Porroa, P., Diaz, S., Enquist, B.J., Asner, G.P., and Malhi, Y., 2017. Variation in leaf wettability traits along a tropical montane elevation gradient. New Phytologist, 214(3), pp. 989–1001. https://doi.org/10.1111/nph.14121
Hariyono, C.M., Yunianta, Harijono, Sriherwanto, C., Suja'I,I., Nadaviana, A., Junaedi, H., Ma'hadah, M., and Komarudin., 2021. Physico-chemical characteristics of Rhizopus sp.-fermented fish feed pellets containing black soldier fly larvae (Hermetia illucens) meal. IOP Conference Series: Earth and Environmental Science, 744, p. 012024. https://doi.org/10.1088/1755-1315/744/1/012024
Janairo, G., Linley, M. S., Yap, L., Llanos-Lazaro, N., and Robles, J., 2015. Determination of the sensitivity range of biuret test for undergraduate biochemistry experiments. e-Journal of Science and Technology, 6, pp. 77–83.
Kang, X., Kirui, A., MuszyÅ„ski, A., Widanage, M.C.D., Chen, A., Azadi, P., Wang, P., Mentink-Vigier, F., and Wang, T., 2018. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nature Communications, 9(1), pp. 1–12. https://doi.org/10.1038/s41467-018-05199-0
Kustyawati, M.E., Subeki, Murhadi, Rizal, S., and Astuti, P., 2020. Vitamin B12 production in soybean fermentation for tempeh. AIMS Agriculture and Food, 5(2), pp. 262–271. https://doi.org/10.3934/agrfood.2020.2.262
Langeland, M., Vidakovic, A., Vielma, J., Lindberg, J.E., Kiessling, A., and Lundh, T., 2016. Digestibility of microbial and mussel meal for Arctic charr (Salvelinus alpinus) and Eurasian perch (Perca fluviatilis). Aquaculture Nutrition, 22(2), pp. 485–495. https://doi.org/10.1111/anu.12268
Leiskayanti, Y., Sriherwanto, C., and Suja'I, I., 2017. Fermentasi menggunakan ragi tempe sebagai cara biologis pengapungan pakan ikan. [Fermentation using tempe starter as a biological method for providing buoyancy to fish feed]. Jurnal Bioteknologi & Biosains Indonesia, 4(2), pp.54–63. https://doi.org/10.29122/jbbi.v4i2.2503
Lin, C.Y., Chou, W.C., Tsai, J.S., and Lin, W.T., 2006. Water repellency of Casuarina windbreaks (Casuarina equisetifolia Forst.) caused by fungi in central Taiwan. Ecological Engineering, 26(3), pp. 283–292. https://doi.org/10.1016/j.ecoleng.2005.10.010
Linder, M.B., Szilvay, G.R., Nakari-Setälä, T., and Penttilä, M.E., 2005. Hydrophobins: The protein-amphiphiles of filamentous fungi. FEMS Microbiology Reviews, 29(5), pp. 877–896. https://doi.org/10.1016/j.femsre.2005.01.004
Londoño-Hernández, L., Ramírez-Toro, C., Ruiz, H.A., Ascacio-Valdés, J. A., Aguilar-Gonzalez, M.A., Rodríguez-Herrera, R., and Aguilar, C.N., 2017. Rhizopus oryzae – Ancient microbial resource with importance in modern food industry. International Journal of Food Microbiology, 257, pp. 110–127. https://doi.org/10.1016/j.ijfoodmicro.2017.06.012
Manan, S., Ullah, M.W., Ul-Islam, M., Atta, O.M., and Yang G., 2021. Synthesis and applications of fungal mycelium-based advanced functional materials. Journal of Bioresources and Bioproducts, 6(1), pp. 1–10. https://doi.org/10.1016/j.jobab.2021.01.001
Maulana, M.F., Mauladani, S., Rahmawati, A.I., Ma'hadah, R., Kamila, M., Syarif, A., Komarudin, Saputra, H.K.H., Junaedi, H., Cahyadi, D., Ahidin, U., Sriherwanto, C., Suja'I, I., Nadaviana, A., Nugroho, D.W., Ikono, R., and Rochman, N.T., 2020. Physical properties and protein content evaluation of fermented floating feed containing black soldier fly maggots as a potential alternative for fish feed. IOP Conference Series: Earth Environtal Science, 472(1), pp. 012022. https://doi.org/10.1088/1755-1315/472/1/012022
Moriizumi, Y., Fukuda, H., Tanaka, S., Tanaka, D., and Nagai, K., 2020. Temperature dependence of methanol and ethanol vapor sorption in polyhedral oligomeric silsesquioxane (POSS) containing methacrylate membranes. Journal of Polymer Science, 58(18), pp. 2586–2602. https://doi.org/10.1002/pol.20200048
Nitayavardhana, S., Issarapayup, K., Pavasant, P., and Khanal, S.K., 2013. Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate. Bioresource Technology, 133, pp. 301–306. https://doi.org/10.1016/j.biortech.2013.01.073
Rillig, M.C., 2005. A connection between fungal hydrophobins and soil water repellency? Significance of water repellency. Pedobiologia, 49(5), pp. 395–399. https://doi.org/10.1016/j.pedobi.2005.04.004
Robb, D.H.F. and Crampton, V.O., 2013. On-farm feeding and feed management: Perspectives from the fish feed industry. In: MR Hasan and MB New (Eds). On-Farm, Feeding and Feed Management in Aquaculture. FAO Fisheries and Aquaculture Technical Paper no 583. FAO, Rome, pp. 489–518.
Robb, D.H.F., MacLeod, M., Hasan, M.R., and Soto, D., 2017. Greenhouse gas emissions from aquaculture: A life cycle assessment of three Asian systems FAO. Fisheries and Aquaculture Technical Paper no 609. FAO, Rome, pp. 1–92.
Salifu, E. and El Mountassir, G., 2021. Fungal-induced water repellency in sand. Géotechnique, 71(7), pp. 608–615. https://doi.org/10.1680/jgeot.19.P.341
Sriherwanto, C., Rahmanisa, H., Yunita, E., Suja'I, I., and Nadaviana, A., 2021a. Altering physical characteristics of sinking fish-feed through sub-optimal fermentation using tempeh mould without mechanical extrusion. Journal of Physics Conference Series, 1751(1), p. 012047. https://doi.org/10.1088/1742-6596/1751/1/012047
Sriherwanto, C., Purwaningsih, R.H., Yunita, E., and Suja'I, I., 2021b. Increasing the water stability of sinking feed grits using edible fungal hyphae for reducing aquatic waste: A laboratory study. IOP Conference Series: Earth and Environmental Science, 744(1), p. 012079. https://doi.org/10.1088/1755-1315/744/1/012079
Suliswati, L., Sriherwanto, C., and Suja'i I., 2018. Dampak teknik pengirisan dan pencetakan terhadap daya apung pakan ikan yang difermentasi menggunakan Rhizopus sp. [Impact of slicing and moulding techniques on the floatability of the fish feed fermented by Rhizopus sp.]. Jurnal Bioteknoli & Biosains Indonesia, 5(2), pp. 127–138. https://doi.org/10.29122/jbbi.v5i2.3096
Sumner, J.B. and Graham, V.A., 1921. Dinitrosalicylic acid: A reagent for the estimation of sugar in normal and diabetic urine. Journal of Biological Chemistry, 47(1), pp. 5–9. https://doi.org/10.1016/S0021-9258(18)85062-1
Tacon, A.G.J., Metian, M., and Hasan, M.R., 2009. Feed ingredients and fertilizers for farmed aquatic animals. Sources and composition FAO Fisheries and Aquaculture Technical Paper no 540. FAO, Rome, pp. 1–209.
Vidakovic, A., Langeland, M., Sundh, H., Sundell, K., Olstorpe, M., Vielma, J., Kiessling, A., and Lundh, T., 2016. Evaluation of growth performance and intestinal barrier function in Arctic Charr (Salvelinus alpinus) fed yeast (Saccharomyces cerevisiae), fungi (Rhizopus oryzae) and blue mussel (Mytilus edulis). Aquaculture Nutrition, 22(6), pp. 1348–1360. https://doi.org/10.1111/anu.12344
Young, I.M., Feeney, D.S., O'Donnell, A.G., and Goulding, K.W.T., 2012. Fungi in century old managed soils could hold key to the development of soil water repellency. Soil Biology and Biochemistry, 45, pp. 125–127. https://doi.org/10.1016/j.soilbio.2011.10.007
Zaman, A.B., Sriherwanto, C., Yunita, E., and Suja'I, I., 2018. Karakteristik fisik pakan ikan apung non-ekstrusi yang dibuat melalui fermentasi Rhizopus oryzae. [Physical characteristics of non-extruded floating fish feed produced through Rhizopus oryzae fermentation]. Jurnal Bioteknologi & Biosains Indonesia, 5(1), pp. 27–35. https://doi.org/10.29122/jbbi.v5i1.2793
Zheng, W., Morris, E.K., and Rillig, M.C., 2014. Ectomycorrhizal fungi in association with Pinus sylvestris seedlings promote soil aggregation and soil water repellency. Soil Biology and Biochemistry, 78, pp. 326–331. https://doi.org/10.1016/j.soilbio.2014.07.015
Copyright (c) 2023 Liza Nurohmah, Catur Sriherwanto, Imam Suja'i, Etyn Yunita
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board, based on the author's consent, while the moral rights of the publication belong to the author(s).
2. The formal legal aspect of journal accessibility refers to the same Creative Common Attribution + Noncommercial + ShareAlike (CC BY-NC-SA), implying that publication can be used for non-commercial purposes in its original form.
3. Every publication (printed/electronic) is open access for educational, research and library purposes. In addition to the objectives stated above, the editorial board is not responsible for copyright infringement