Analisis Regresi Ordinal Model Logit dan Probit untuk Memprediksi Faktor yang Mempengaruhi Bayi Berat Lahir Rendah

Marius Iban, Diah Indriani

= http://dx.doi.org/10.20473/jbk.v8i1.2019.62-71
Abstract views = 758 times | downloads = 491 times

Abstract


Low birth weight (LBW) has greater risk for experiencing problems. Based on Indonesian DHS data in 2012, the province with the highest infant mortality rate estimate was West Papua amounting to 75 per 1,000 live births. This study used logit and probit regression models to analyze the factors that caused low birth weight. It is thought that by comparing both logit and probit models, the best results could be obtained. The results of research showed that the independent variables that affected babies with LBW were the distance of pregnancy and maternal parity. If the distance of pregnancy was less than 2 years, it would increase the incidence of LBW by 2.7 times (p: 0,00: CI 1b: -4,05;CI ub: -1,50). Moreover, the distance of pregnancy which was less than 2 years would only improve LBW by 19.4 percent, compared with the distance of the pregnancy that was more than 2 years which would increase infant weight by 80.6 percent. As with maternal parity between 0 and more than 4, there was a chance of increasing the incidence of LBW by 1.94 times (p: 0,00; CI 1b: -2,66;CI ub: -1,21). On the other hand, maternal parity of 0 and parity > 4 would improve LBW by 74.2 percent, and a parity of 1 to 4 would only see 25.8 percent improvement. The result of this study suggested that there should be improvement in health promotions, such as family planning cuonseling and consultation for eligible couples.

Keywords


ordinal regression, logit-probit model, low birth weight

Full Text:

PDF

References


BPS, 2013. Survei Demografi dan Kesehatan Indonesia 2012. Jakarta: Badan Pusat Statistik.

Dahlan, S., 2014. Regresi Ordinal. Jakarta: Epidemiologi Indonesia.

Gunawan, A., 2015. Hubungan Status Pekerjaan Ibu dan Jarak Kehamilan dengan Bayi Berat Lahir Rendah di RSUD Luwuk. Tesis. Universitas Gadjah Mada.

Iban, M., 2017. Perbandingan Regresi Logistik Ordinal Model Logit dan Model Probit pada Analisis Pengaruh Faktor Ibu terhadap Bayi Berat Lahir Rendah (BBLR). Skripsi. Universitas Airlangga.

Kemenkes RI, 2012. Profil Kesehatan Indonesia 2012. Jakarta: Kementerian Kesehatan Republik Indonesia.

Kosim, S.M., Yunanto, A., Dewi, R., Gatot, I.S., Usman, A., 2014. Buku Ajar Neonatologi. Jakarta: Ikatan Dokter Anak Indonesia.

Nawangsih, E., Bendesa, I., 2013. Perbandingan Ketepatan Model Logit dan Probit dalam Memprediksi Kecenderungan Tingkat Hunian Kamar Usaha Akomodasi di Bali 2010. Jurnal Ekonomi Kuantitatif Terapan, 6(1), pp.62–66.

Palupi, W.G.G., Abadyo, 2013. Perbandingan Model Logistik Biner dengan Regresi Model Probit terhadap Faktor-faktor yang Mempengaruhi Sikap Siswa SMP pada Mata Pelajaran Matematika. Jurnal Online Universitas Negeri Malang, 1(3), pp.1–5.

Pamungkas, R.S., Argadireja, D.S., Sakinah, R.K., 2015. Hubungan Usia Ibu dan Paritas dengan Tingkat Kejadian BBLR di Wilayah Kerja Puskesmas Plered, Kecamatan Plered Kabupaten Purwakarta Tahun 2014. In: Prosiding Pendidikan Dokter. Bandung: Universitas Islam Bandung, pp.989–994.

Pramono, M.S., Paramita, A., 2015. Pola Kejadian dan Determinan Bayi dengan Berat Badan Lahir Rendah (BBLR) di Indonesia Tahun 2013. Buletin Penelitian Sistem Kesehatan, 18(1), pp.1–10.

Proverawati, A., 2010. Bayi Berat Lahir Rendah. Yogyakarta: Nuha Medika.

Vasisht, A.K., 2000. Logit and Probit Analysis. New Delhi: Library Avenue.

WHO, 2013. Neonatal and Child Profile. [online] Available at: .


Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Jurnal Biometrika dan Kependudukan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This Journal is Indexed By:

             

 

View My Stats

 

Fakultas Kesehatan Masyarakat Universitas Airlangga

Kampus C Universitas Airlangga

Jl. Mulyorejo Kampus C Unair, Surabaya 60115, Indonesia.

E-mail: j.biokep@gmail.com / jbk@fkm.unair.ac.id

Phone: +62 816 502 307