Peramalan Jumlah Kasus Infeksi Saluran Pernafasan Akut (ISPA) pada Laki-Laki Tahun 2019 dengan Metode ARIMA

Moch. Fitriawan Eka Saputra, Muhammad Rizky

= http://dx.doi.org/10.20473/jbk.v8i2.2019.138-145
Abstract views = 1970 times | downloads = 898 times

Abstract


The ARIMA method is an approach that forms the most powerful model in analyzing time series data, and the studies given are very thorough. This method can be modeling data stationary or not stationary, it can be seen from sine wave shape of the plot ACF. This method is used because obtained the results are better and more accurate. According to WHO, Acute Respiratory Infection (ARI) is an infectious disease that causes can be morbidity and mortality. A four million people die each year. This study used secondary data so that it is categorized as non reactive research. The population were cases of Acute Respiratory Infections (ARI) at Jagir Health Center Surabaya which were recorded in 2013 to 2018 (monthly). The dependent variable is the cases of Acute Respiratory Infection (ARI), while the independent variable is time. The model that was obtained from the ARIMA method is a model (2.0,1). The forecasting result is 354 cases in 2019, the forecasting has increased from 2018 to only 313 cases. It was a suggestion that the forecasting result can be a reference for developing a policy and a new program or improvement in previous program so that the number cases of ARI at the Jagir Health Center can be resolved properly.

Keywords


forecasting, autoregressive intregated moving average, acute respiratory tract infection

Full Text:

PDF

References


Darmawan, G., 2009. Perbandingan Metode Peramalan ARIMA dan ARFIMA pada Data Long Memory. Jurnal Statistika, 9(2), pp.109–113.

Dinkes Kota Surabaya, 2017. Profil Kesehatan Kota Surabaya Tahun 2016. Surabaya: Dinas Kesehatan Kota Surabaya.

Hasan, I., 2002. Pokok-Pokok Materi Metodologi Penelitian dan Aplikasinya. Bogor: Ghalia Indonesia.

Irianto, K., 2015. Memahami Berbagai Macam Penyakit. Bandung: Alfabeta.

Kasanah, L.N., 2016. Aplikasi Autoregressive Integrated Moving Average (ARIMA) untuk Meramalkan Jumlah Demam Berdarah Dengue (DBD) di Puskesmas Mulyorejo. Jurnal Biometrika dan Kependudukan, 5(2), pp.177–186.

Kemenkes RI, 2013. Riset Kesehatan Dasar. Jakarta: Badan Penelitian dan Pengembangan Kesehatan Kementerian Kesehatan Republik Indonesia.

Kuncoro, M., 2004. Model Kausal: Dasar-Dasa Metode ARIMA (Box-Jenkins). Jakarta: Erlangga.

Kuntoro, 2011. Dasar Filosofis Metodologi Penelitian. Surabaya: Pustaka Melati.

Makridakis, S., Wheelwright, S., McGee, V., 1995. Metode dan Aplikasi Peramalan Jilid 1. Jakarta: Erlangga.

Rais, 2009. Pemodelan Data Time Series dengan Metode Box-Jenkins. JIMT, 6(1), pp.1–10.

Syahidi, M.H., Gayatri, D., Bantas, K., 2016. Faktor-faktor yang Mempengaruhi Kejadian Infeksi Saluran Pernapasan Akut (ISPA) pada Anak Berumur 12-59 Bulan di Puskesmas Kelurahan Tebet Barat, Kecamatan Tebet, Jakarta Selatan, Tahun 2013. Jurnal Epidemiologi Kesehatan Indonesia, 1(1), pp.23–27.

Tsay, R.S., 2005. Analysis of Financial Time Series: Financial Econometrics. Canada: John Wiley & Sons, Inc.

Wardani, I.G.A.K., Wihardi, K., 2010. Penelitian Tindakan Kelas. Jakarta: Universitas Terbuka.

Wei, W.W.S., 2006. Time Series Analysis: Univariate and Multivariate Methods. 2nd ed. United States of America: Pearson Education, Inc.

WHO, 2008. Infeksi Saluran Pernapasan Akut (ISPA) yang Cenderung Menjadi Epidemi dan Pandemi di Fasilitas Pelayanan Kesehatan. Jenewa: World Health Organization.


Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Jurnal Biometrika dan Kependudukan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This Journal is Indexed By:

             

 

View My Stats

 

Fakultas Kesehatan Masyarakat Universitas Airlangga

Kampus C Universitas Airlangga

Jl. Mulyorejo Kampus C Unair, Surabaya 60115, Indonesia.

E-mail: j.biokep@gmail.com / jbk@fkm.unair.ac.id

Phone: +62 816 502 307

 

 Flag Counter