IMPLEMENTATION OF CLUSTERING USING K-MEANS METHOD TO DETERMINE NUTRITIONAL STATUS
Downloads
Cluster analysis aims to classify data objects into two categories: objects that are similar in characteristics in one cluster and objects that are different in characteristics with the other objects of another cluster. K-Means is a method included in the distance-based clustering algorithm that starts by determining the number of desired clusters. Malnutrition is one of the biggest concerns in Indonesia. According to Riskesdas 2018 data, as many as 17.7% infants under 60-month-old are still having problems with nutrition intake while 3.9% are having malnutrition. This might result in higher death rate. This research was conducted to classify the nutritional status of infants under 60-month-old conducted by the C-Means Clustering method. This research is non-reactive, using secondary data in Ponkesdes Mayangrejo, Bojonegoro without direct interaction with the subject. This study concluded that the grouping of nutritional status is possible by using K-Means with 4 clusters formed which are 23 malnourished toddlers, 17 undernourished toddlers, 7 nourished toddlers, and 10 over-nourished toddlers.
Agusta, Y., 2007. K-Means-Penerapan, Permasalahan dan Metode Terkait. Jurnal Sistem dan Informatika. 3 (February): pp.47–60.
Bastian, A., Sujadi, H., and Febrianto, G., 2018. Penerapan Algoritma K-Means Clustering Analysis pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka). Jurnal Sistem Informasi. 14 (1), pp. 26–36.
Ediyanto, Mara, M.N., and Satyahadewi, N., 2013. Pengklasifikasian Karakteristik dengan Metode K-Means Cluster Analysis. Buletin Ilmiah. 2 (2), pp. 133–136.
Efendi, R., Coastera, F.F., and Tanjung, F.R., 2019. Pengelompokan dan Pemetaan Derajat Kesehatan Kota Bengkulu dengan Metode K-Means Clustering. Jurnal Rekursif. 7 (1), pp. 91–97.
Efron, B., and Robert J. T., 1998. An Introductio to the Bootstrap. Second Edition. United States of America: Chapman & Hall.
Han, J., Kamber, M., and Pei, J. 2011. Data Mining. Concepts and Techniques. 3rd Edition. Waltham: The Morgan Kaufmann Series in Data Management Systems.
Indonesian Ministry of Health, 2003. Indikator Indonesia Sehat 2010. Jakarta.
Indonesian Ministry of Health, 2004. Petunjuk Teknis Standar Pelayanan Minimal (SPM) Penyelenggaraan Perbaikan Gizi Masyarakat. Jakarta.
Indonesian Ministry of Health, 2010. Hasil Utama Riskesdas 2018. Jakarta.
Indonesian Ministry of Health Decree Number 1995/MenKes/SK/XII/2010 Concerning Standar Antropometri Penilaian Status Gizi Anak.
Indonesian Ministry of Health Regulation Number 155/Menkes/Per/I/2010 Concerning Penggunaan Kartu Menuju Sehat (KMS) Bagi Balita.
Irfani, E., and Rani, S.S., 2018. Algoritma K-Means Clustering untuk Menentukan Nilai Gizi Balita. Jurnal Sistem dan Teknologi Informasi (JUSTIN). 6(4), pp.165–172.
Kuntoro. 2011. Metode Statistik. Revised Edition. Surabaya: Melati.
Lestari, N.D., 2016. Analisis Determina Gizi Kurang pada Balita di Kulon Progo, Yogyakarta. Indonesia Journal of Nursing Practices. 1 (1): pp. 15–21.
Prasetyo, H., Kuntoro, Purnomo, W., Melaniani, S., Adriani, M., and Otok, B.W., 2014. Penerapan Clustering Bootstrap dengan Metode K-Means. Jurnal Biometrika dan Kependudukan. 3 (1), pp. 43–49.
Rahim, F. K. 2014. Faktor Risiko Underwight Balita Umur 7-59 Bulan. Jurnal Kesehatan Masyarakat. 9 (2), pp. 115–121.
Rohmawati, N., Defiyanti, S., Jajuli, M., 2015. Implementasi Algoritma K-Means dalam Pengklasteran Mahasiswa Pelamar Beasiswa. Jitter. I (2): pp. 62–68.
Singla, A., and Karambir. 2012. Comparative Analysis & Evaluation of Euclidean Distance Function and Manhattan Distance Function Using K-means Algorithm. International Journal of Advanced Research in Computer Science and Software Engineering. 2 (7), pp. 63–68.
Sundari, S.S., and Ariani, N., 2019. Penerapan Data Mining untuk Pengelompokan Penyakit dengan Algoritma Fuzzy C-Means (Studi Kasus: UPT Puskesmas Salawu). Jurnal Voice of Informatics. 8 (2), pp. 63–67.
Utami, N.H., Putri, D.S. ., and Rosa, B.C., 2014. Kejadian Pendek Gemuk pada Anak Usia Bawah Dua Tahun Berhubungan dengan Konsumsi Lemak dan Pendidikan Ibu. Penel Gizi Makan. 37 (1): pp. 1–10.
Witten, I. H., Frank, E., and Hall, M.A., 2011. Data Mining: Practical Machine Learning Tools and Techniques. Third Edition. San Francisco: The Morgan Kaufmann Series in Data Management Systems.
Copyright ©2022 Jurnal Biometrika dan Kependudukan (Journal of Biometrics and Population)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of all journal manuscripts is held by the Jurnal Biometrika dan Kependudukan.
2. Formal legal provisions to access digital articles of the electronic journals are subject to the provision of the Creative Commons Attribution-ShareAlike license (CC BY-NC-SA), which means that Jurnal Kesehatan Biometrika dan Kependudukan to keep, transfer media/format, manage in the form of databases, maintain, and publish articles.
3. Published manuscripts both printed and electronic are open access for educational, research, and library purposes. Additionally, the editorial board is not responsible for any violations of copyright law.