Studi Interaksi Molekuler Aktivitas Antimikroba Peptida Bioaktif terhadap Staphylococcus aureus Secara In silico

Taufik Muhammad Fakih, Mentari Luthfika Dewi


Abstract views = 1735 times | downloads = 2494 times


Pendahuluan: Lendir kulit ikan lele kuning (Pelteobagrus fulvidraco), mengandung peptida bioaktif dan banyak dimanfaatkan dalam pengobatan berbagai penyakit karena memiliki aktivitas biologis, diantaranya sebagai antimikroba. Beberapa peptida bioaktif tersebut, antara lain pelteobagrin, myxinidin, pleurocidin, dan pardaxin-P1 dan telah terbukti mampu menghambat Penicillin-Binding Protein 3 (PBP3) dari Staphylococcus aureus. Tujuan: Penelitian ini bertujuan untuk mengidentifikasi aktivitas antimikroba molekul peptida bioaktif secara in silico terhadap makromolekul Penicillin-Binding Protein 3 (PBP3) dari Staphylococcus aureus dan interaksi peptida bioaktif tersebut yang terlibat dalam mekanisme aksi antimikroba. Metode: Sekuensing peptida bioaktif terlebih dahulu dilakukan pemodelan ke dalam bentuk konformasi 3D menggunakan software PEP-FOLD. Konformasi terbaik hasil pemodelan dipilih untuk kemudian dilakukan studi penambatan molekuler terhadap makromolekul dari Staphylococcus aureus menggunakan software PatchDock. Interaksi molekuler yang terbentuk selanjutnya diidentifikasi lebih lanjut menggunakan software BIOVIA Discovery Studio 2020. Hasil: Berdasarkan hasil penambatan molekuler menunjukkan bahwa peptida bioaktif myxinidin memiliki afinitas paling baik dengan ACE score −2497,26 kJ/mol. Kesimpulan: Peptida bioaktif lendir kulit ikan lele kuning (Pelteobagrus fulvidraco) dapat dipertimbangkan sebagai kandidat antimikroba alami.


Pelteobagrus fulvidraco, peptida bioaktif, Penicillin-Binding Protein 3 (PBP3), Staphylococcus aureus

Full Text:



Aruleba, R. T., Adekiya, T. A., Oyinloye, B. E. & Kappo, A. P. (2018). Structural Studies of Predicted Ligand Binding Sites and Molecular Docking Analysis of Slc2a4 as a Therapeutic Target for the Treatment of Cancer. International Journal of Molecular Sciences; 19; 386.

Bergsson, G., Agerberth, B., Jornvall, H. & Gudmundsson, G. H. (2005). Isolation and Identification of Antimicrobial Components from the Epidermal Mucus of Atlantic Cod (Gadus morhua). The FEBS Journal; 272; 4960-4969.

Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., Scheld, M., Spellberg, B. & Bartlett, J. (2009). Bad Bugs, No Drugs: no ESKAPE! An Update from the Infectious Diseases Society of America. Clinical Infectious Diseases; 48; 1-12.

Chavan, S. G. & Deobagkar, D. D. (2015). An in silico Insight into Novel Therapeutic Interaction of LTNF Peptide-LT10 and Design of Structure Based Peptidomimetics for Putative Anti-Diabetic Activity. PLoS One; 10; e0121860.

Coutinho, H. D., Costa, J. G., Lima, E. O., Falcao-Silva, V. S. & Siqueira-Junior, J. P. (2008). Enhancement of the Antibiotic Activity Against a Multiresistant Escherichia coli by Mentha arvensis L. and Chlorpromazine. Chemotherapy; 4; 328-330.

Coutinho, H. D., Costa, J. G., Lima, E. O., Falcao-Silva, V. S. & Siqueira-Junior, J. P. (2009). Herbal Therapy Associated with Antibiotic Therapy: Potentiation of the Antibiotic Activity Against Methicillin–Resistant Staphylococcus aureus by Turnera ulmifolia L. BMC Complementary and Alternative Medicine; 9; 13.

Diefenbeck, M., Mennenga, U., Guckel, P., Tiemann, A.H., Muckley, T., & Hofmann, G.O. (2011) Vacuum-assisted Closure Therapy for the Treatment of Acute Postoperative Osteomyelitis. Z Orthop Unfall; 149; 336-341.

Ellis, A. E. (2001). Innate Host Defense Mechanisms of Fish Against Viruses and Bacteria. Developmental and Comparative Immunology; 25; 827-839.

Garo, E., Eldridge, G. R., Goering, M. G., DeLancey, P. E., Hamilton, M. A., Costerton, J. W. & James, G. A. (2007). Asiatic Acid and Corosolic Acid Enhance the Susceptibility of Pseudomonas aeruginosa Biofilms to Tobramycin. Antimicrobial Agents and Chemotherapy; 51; 1813-1817.

Kemmish, H., Fasnacht, M. & Yan, L. (2017). Fully Automated Antibody Structure Prediction using BIOVIA Tools: Validation Study. PLoS One; 12: e0177923.

Klevens, R. M., Morrison, M. A., Nadle, J., Petit, S., Gershman, K., Ray, S., Harrison, L. H., Lynfield, R., Dumyati, G., Townes, J. M., Craig, A. S., Zell, E. R., Fosheim, G. E., McDougal, L. K., Carey, R. B. & Fridkin, S. K. Active Bacterial Core surveillance (ABCs) MRSA Investigatorset Al. Invasive Methicillin-Resistant Staphylococcus aureus Infections in the United States. Jama; 298; 1763-1771.

Kluytmans, J., van Belkum, A. & Verbrugh, H. (1997). Nasal Carriage of Staphylococcus aureus: Epidemiology, Underlying Mechanisms, and Associated Risks. Clinical Microbiology Reviews; 10; 505-520.

Kuehnert, M. J., Hill, H. A., Kupronis, B. A., Tokars, J. I., Solomon, S. L. & Jernigan, D. B. Methicillin-resistant-Staphylococcus aureus hospitalizations, United States. Emerging Infectious Diseases; 11; 868-872.

Kurniawan, F., Miura, Y., Kartasasmita, R. E., Yoshioka, N., Mutalib, A. & Tjahjono, D. H. (2018). In Silico Study, Synthesis, and Cytotoxic Activities of Porphyrin Derivatives. Pharmaceuticals; 11; 8.

Luders, T., Birkemo, G. A., Meyer, J. N., Andersen, O. & Nes, I. F. (2005) Proline Conformation Dependent Antimicrobial Activity of a Proline-Rich Histone H1 N-terminal Peptide Fragment Isolated from the Skin Mucus of Atlantic Salmon. Antimicrobial Agents and Chemotherapy; 49; 2399-2406.

Norel, R., Sheinerman, F., Petrey, D. & Honig, B. (2001). Electrostatic Contributions to Protein–Protein Interactions: Fast Energetic Filters for Docking and Their Physical Basis. Protein Science; 10; 2147-2161.

Prabhu, D. S. & Rajeswari, V. D. (2016). In Silico Docking Analysis of Bioactive Compounds from Chinese Medicine Jinqi Jiangtang Tablet (JQJTT) using Patch Dock. Journal of Chemichal and Pharmaceutical Research; 8; 15-21.

Shen, Y., Maupetit, J., Derreumaux, P. & Tuffery P. (2014). Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. Journal of Chemical Theory and Computation; 10; 4745-4758.

Su, Y. (2011) Isolation and Identification of Pelteobagrin, A Novel Antimicrobial Peptide from the Skin Mucus of Yellow Catfish (Pelteobagrus fulvidraco). Comparative Biochemistry and Physiology; 158; 149-154.

Subramanian, S., Ross, N. W. & MacKinnon, S. L. (2008). Comparison of Antimicrobial Activity in the Epidermal Mucus Extracts of Fish. Comparative Biochemistry and Physiology; 150; 85-92.

Subramanian, S., Ross, N. W., & MacKinnon, S. L. (2009). Myxinidin, A Novel Antimicrobial Peptide from the Epidermal Mucus of Hagfish, Myxine glutinosa L. Marine Biotechnology; 11; 748-757.

Thevenet, P., Shen, Y., Maupetit, J., Guyon, F., Derreumaux, P. & Tuffery, P. (2012). PEP-FOLD: An Updated De Novo Structure Prediction Server for Both Linear and Disulfide Bonded Cyclic Peptides. Nucleic Acids Research; 40; 288-293.

Veeraragavan, V., Narayanaswamy, R. & Chidambaram, R. (2017). Predicting the Biodegradability Nature of Imidazole and Its Derivatives by Modulating Two Histidine Degradation Enzymes (Urocanase and Formiminoglutamase) Activities. Asian Journal Pharmaceutical and Clinical Research; 10; 383-386.

Whyte, S. K. (2007). The Innate Immune Response of Finfish – A Review of Current Knowledge. Fish and Shellfish Immunology; 23; 1127-1151.

Yoshida, H., Kawai, F., Obayashi, E., Akashi, S., Roper, D. I., Tame, J. R. H. & Park, S. Y. (2012) Crystal Structures of Penicillin-Binding Protein 3 (PBP3) from Methicillin-Resistant Staphylococcus aureus in the Apo and Cefotaxime‐Bound Forms. Journal of Molecular Biology; 423; 351-364.


  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright© 2021 Jurnal Farmasi dan Ilmu Kefarmasian Indonesia (JFIKI)

View JFIKI Stats