Uji Aktivitas Senyawa Bahan Alam terhadap Enzim Mpro pada SARS-CoV-2 Secara In Silico
Downloads
Pendahuluan: Lebih dari 200 negara telah mengalami 30 juta lebih kasus positif COVID-19 dengan angka kematian di atas 1 juta. Di Indonesia, telah terkonfirmasi 300 ribu lebih kasus COVID-19 dengan 11 ribu kasus kematian tercatat pada September 2020. Obat-obatan yang saat ini dijadikan pedoman terapi di antaranya, azitromisin, remdesivir, oseltamivir, dan nelfinavir. Akan tetapi, obat-obatan tersebut dilaporkan memiliki kekurangan sehingga penelitian lebih lanjut diperlukan untuk menemukan senyawa aktif untuk menekan COVID-19 secara efektif dan efisien. Dalam hal pencarian senyawa aktif yang berpotensi sebagai antivirus SARS-CoV-2, studi fitokimia terhadap senyawa-senyawa bahan alam terus dilakukan. Senyawa fentermin, luteolin-7-galaktosida, asam maslinat, asam glizirizinat, plantarisin, terpineol, guaiol, linalool, skutelarin-7-galaktosida, dan galokatekin telah diketahui dapat menghambat protein ACE-2 yang merupakan tempat masuk SARS-CoV-2 pada sel epitel sistem pernapasan manusia. Tujuan: Penelitian dilakukan untuk menemukan potensi interaksi lain senyawa bahan alam tersebut terhadap tubuh virus melalui interaksi dengan enzim Mpro sebagai komponen penting dalam replikasi dan transkripsi virus. Metode: Penelitian dilakukan dengan simulasi penambatan molekuler senyawa uji terhadap enzim Mpro (http://www.rscb.org, PDB ID: 6LU7). Hasil: Berdasarkan penelitian yang telah dilakukan, asam maslinat merupakan senyawa dengan interaksi terhadap Mpro paling potensial dengan energi bebas Gibbs sebesar -8,73 kkal/mol dan konstanta inhibisi 0,40 µM dan interaksi ikatan hidrogen dengan residu katalitik Mpro Cys145. Kesimpulan: Asam maslinat merupakan senyawa dengan potensi aktivitas dan afinitas paling tinggi terhadap enzim Mpro pada SARS-CoV-2.
Almasi, F. & Mohammadipanah, F. (2020). Hypothetical Targets and Plausible Drugs of Coronavirus Infection Caused by SARS-CoV-2. Transboundary and Emerging Diseases; 68; 318-332.
Anwar, F., Altayb, H. N., Al-Abbasi, F. A., Al-Malki, A. L., Kamal, M. A. & Kumar, V. (2020). Antiviral Effects of Probiotic Metabolites on COVID-19. Journal of Biomolecular Structure & Dynamics; 2020; 1–10.
CDC. (2020). Symptoms of Coronavirus. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html. Accessed: 20 Oktober 2020.
Chang, R. & Sun, W, Z. (2020). Repositioning Chloroquine as Antiviral Prophylaxis against COVID-19: Potential and Challenges. Drug Discov Today; 25; 1786-1792.
Chen, C. Y., Wang, F. L. & Lin, C. C. (2006). Chronic Hydroxychloroquine Use Associated with QT Prolongation and Refractory Ventricular Arrhythmia. Clinical Toxicology; 44; 173-175.
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X. & Zhang, L. (2020). Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: a Descriptive study. Lancet; 395; 507–513.
Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L. & Liu, S. Q. (2016). Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. International Journal of Molecular Sciences; 17; 1-34.
Hui, D. S., Azhar, E., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, T. D., Memish, Z. A., Drosten, C., Zumla, A. & Petersen, E. (2020). The Continuing 2019-nCoV Epidemic Threat of Novel Coronaviruses to Global Health - the Latest 2019 Novel Coronavirus Outbreak in Wuhan, China. International Journal of Infectious Diseases; 91; 264–266.
Iheagwam, F. N., Rotimi, S. O. (2020). Computer-Aided Analysis of Multiple SARS-CoV-2 Therapeutic Targets: Identification of Potent Molecules from African Medicinal Plants. Scientifica; 2020; 1-25.
Jain, A. N. & Nicholls, A. (2008). Recommendations for Evaluation of Computational Methods. Journal of Computer-aided Molecular Design; 22; 133-139.
Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X. (2020). Structure of Mpro from SARS-CoV-2 and Discovery of Its Inhibitors. Nature; 582; 289-293.
Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. (2004). Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications. Nature Reviews. Drug Discovery; 3; 935–949.
Morris, G, M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry; 30; 2785–2791.
My, T., Loan, H. T. P., Hai, N. T. T., Hieu, L. T., Hoa, T. T., Thuy, B. T. P., Quang, D. T., Triet, N. T., Anh, T. T. V., Dieu, N. T. X., Trung, N. T., Hue, N. V., Tat, P. V., Tung, V. T. & Nhung, N. T. A. (2020). Evaluation of the Inhibitory Activities of COVID-19 of Melaleuca Cajuputi Oil Using Docking Simulation. Chemistry Select; 5; 6312-6320.
Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y. & Jung, S. (2016). An Overview of Severe Acute Respiratory Syndrome–Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. Journal of Medicinal Chemistry; 59; 6595–6628.
Prianto, B. (2008). Peran Kimia Komputasi dalam Mempelajari Mekanisme Reaksi Proses Elektrolisis NaCl Menjadi NaClO4. Berita Dirgantara; 9; 79-82.
Sharma, P, & Shanavas, A. (2020). Natural Derivatives with Dual Binding Potential against SARS-CoV-2 Main Protease and Human ACE2 Possess Low Oral Bioavailability: A Brief Computational Analysis. Journal of Biomolecular Structure & Dynamics; 39; 1–12.
Sherman, W., Beard, H. S. & Farid, R. (2006). Use of an Induced Fit Receptor Structure in Virtual Screening. Chemical Biology & Drug Design; 67; 83-84.
Sparrow A. (2020). How China's Coronavirus Is Spreading-and How to Stop It. https://foreignpolicy.com/2020/01/26/2019-ncov-china-epidemic-pandemic-the-wuhan-coronavirus-a-tentative-clinical-profile/. Accessed: 20 Oktober 2020.
Tahir, Q. M., Alqahtani, S. M., Alamri, M. A., et al. (2020). Structural Basis of SARS-CoV-2 3CLpro and Anti-COVID-19 Drug Discovery from Medicinal Plants. Journal of Pharmaceutical Analysis; .
Tressler Hessen, M. (2020). Novel Coronavirus Information Center: Expert Guidance and Commentary. https://www.elsevier.com/connect/coronavirus-information-center. Accessed: 20 Oktober 2020.
Tripathi, M. K., Singh, P., Sharma. S., Singh, T. J., Ethayathulla, A. S. & Kaur, P. (2020). Identification of Bioactive Molecules from Withania somnifera (Ashwagandha) as SARS-CoV-2 Main Protease Inhibitor. Journal of Biomolecular Structure and Dynamics; 39; 1-14.
Vardhan, S. & Sahoo, S. K. (2020). In Silico ADMET and Molecular Docking Study on Searching Potential Inhibitors from Limonoids and Triterpenoids for COVID-19. Computers in Biology and Medicine; 124; 1-12.
Wan, Y., Shanga, J., Grahamb, R., Baricb, R. S. & Li, F. (2020). Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology; 94; 1-9.
Weiner, S, J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S. & Weiner, W. (1984). A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. Journal of the American Chemical Society; 106; 765–784.
WHO. (2020a). Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease is Suspected. https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf. Accessed: 10 Oktober 2020.
WHO. (2020b). Coronavirus Disease (COVID-19) Pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed: 20 Oktober 2020.
Wieder, M., Perricone, U., Seidel, T., Boresch, S. & Langer, T. (2016). Comparing Pharmacophore Models Derived from Crsytal Structures and from Molecular Dynamics Simulations. Monatshefte für Chemie; 147; 553-563.
Wong, G., Bi, Y. B., Wang, Q. H., Chen, X. W., Zhang, Z. G. & Yao, Y. G. (2020). Zoonotic Origins of Human Coronavirus 2019 (HCoV-19/SARS-CoV-2): why is this work important?. Zoological Research, 41; 213–219.
Xu Z, Peng C, Shi Y., Zhu, Z., Mu, K., Wang, X. & Zhu, W. (2020). Nelfinavir was Predicted to be a Potential Inhibitor of 2019-nCov Main Protease by an Integrative Approach Combining Homology Modelling, Molecular Docking and Binding Free Energy Calculation. New York: BioRxiv.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement