Assessing the Neurotoxicological Effect of the Acute Paraquat Aerosols Exposure in Causing Parkinsonism on Mouse through Behavioral Assays
Downloads
Background: In the scientific community, there is no consensus that paraquat, a widely used herbicide, has a strong relationship with the occurrence of Parkinson's disease. A reliable epidemiological explanation of how paraquat can induce parkinsonism is urgently needed because it relates to the agriculture community's potential public health problem. Objective: In this study, mice exposed to aerosols of paraquat solution were assessed by behavioral assays designed to observe whether mice exposed to paraquat aerosols develop cardinal symptoms of Parkinson's disease, such as tremor-at-rest, bradykinesia, rigidity, and postural instability. Methods: To obtain the intended information, we carried out the observation on distal extremities, catalepsy test, wire suspension test, and swimming test consisting of the head position sub-test, the involvement of limbs sub-test, and the swimming direction test, respectively, to both the group of mice exposed to paraquat aerosols and the one which is not. Results: According to the result of the independent-samples t-test calculation on the data obtained from behavioral assays, a significant difference is shown only by the wire suspension test used to assess the development of forelimb rigidity and not the others. Conclusion: Therefore, this study showed that daily exposure for a week to paraquat aerosols insignificantly causes tremor-at-rest, bradykinesia, and postural instability in studied mice but dramatically affects their forelimb performance in the form of rigidity.
Anderson, T., Merrill, A. K., Eckard, M. L., Marvin, E., Conrad, K., Welle, K., Oberdörster, G., Sobolewski, M., Cory-Slechta, D. A. (2021). Paraquat Inhalation, a Translationally Relevant Route of Exposure: Disposition to the Brain and Male-Specific Olfactory Impairment in Mice. Toxicological Sciences; 180; 175-185. doi: 10.1093/toxsci/kfaa183.
Andrews, C. J., Burke, D. & Lance, J. W. (1972). The Response to Muscle Stretch and Shortening in Parkinsonian Rigidity. Brain; 95; 795-812. doi: 10.1093/brain/95.4.795.
Berardelli, A., Rothwell, J. C., Thompson, P. D. & Hallett, M. (2001). Pathophysiology of Bradykinesia in Parkinson's Disease. Brain; 124; 2131-2146. doi: 10.1093/brain/124.11.2131.
Bologna, M. & Paparella, G. (2020). Pathophysiology of rigidity in Parkinson's disease: Another Step Forward. Clinical Neurophysiology; 131; 1971-1972. doi: 10.1016/j.clinph.2020.05.013.
Braak, H., Del Tredici, K., Rüb, U., de Vos, R. A., Jansen, S. E. N. & Braak, E. (2003). Staging of Brain Pathology Related to Sporadic Parkinson's Disease. Neurobiol Aging; 24; 197-211. doi: 10.1016/s0197-4580(02)00065-9.
Caggiano, V., Leiras, R., Goñi-Erro, H., Masini, D., Bellardita, C., Bouvier, J., Caldeira, V., Fisone, G. & Kiehn, O. (2018). Midbrain Circuits that set Locomotor Speed and Gait Selection. Nature; 553; 455-460. doi: 10.1038/nature25448.
DeMaagd, G. & Philip, A. (2015). Parkinson's Disease, and Its Management (Part 1): Disease Entity, Risk Factors, Pathophysiology. Clinical Presentation, and Diagnosis; 40; 504-532.
Esposito, M. S., Capelli, P. & Arber, S. (2014). Brainstem Nucleus MdV Mediates Skilled Forelimb Motor Tasks. Nature; 508; 351-356. doi: 10.1038/nature13023.
Fahim, M. A., Shehab, S., Nemmar, A., Adem, A., Dhanasekaran, S. & Hasan, M. Y. (2013). Daily Subacute Paraquat Exposure Decreases Muscle Function and Substantia Nigra Dopamine Level. Physiological Research; 62; 313-321. doi: 10.33549/physiolres.932386.
Gao, L., Yuan, H. & Xu, E. (2020). Toxicology of Paraquat and Pharmacology of the Protective Effect of 5-Hydroxy-1-Methylhydantoin on Lung Injury Caused by Paraquat Based on Metabolomics. Scientific Reports; 10; 1-16.
Grabli, D., Karachi, C., Welter, M. L., Lau, B., Hirsch, E. C., Vidailhet, M. & François, C. (2012). Normal and Pathological Gait: What We Learn from Parkinson's Disease. Journal of Neurology, Neurosurgery, and Psychiatry; 83; 979-985. doi: 10.1136/jnnp-2012-302263.
Grabow, T. S. & Dougherty, P. M. (2001). Cervicomedullary Intrathecal Injection of Morphine Produces Antinociception in the Orofacial Formalin Test in the Rat. Anesthesiology; 95; 1427-1434. doi: 10.1097/00000542-200112000-00023.
Grillner, S., Robertson, B. & Stephenson-Jones, M. (2013). The Evolutionary Origin of the Vertebrate Basal Ganglia and Its Role in Action Selection. The Journal of Physiology; 591; 5425-5431. doi: 10.1113/jphysiol.2012.246660.
Guo, J. D., Zhao, X., Li, Y., Li, G. R. & Liu, X. L. (2018). Damage to Dopaminergic Neurons By Oxidative Stress in Parkinson's Disease (Review). International Journal of Molecular Medicine; 41; 1817-1825. doi: 10.3892/ijmm.2018.3406.
Jankovic, J. (2008). Parkinson's Disease: Clinical Features and Diagnosis. Journal of Neurology, Neurosurgery, and Psychiatry; 79; 368-376. doi: 10.1136/jnnp.2007.131045.
Konthonbut, P., Kongtip, P., Nankongnab, N., Tipayamongkholgul, M., Yoosook, W., & Woskie, S. (2020). Paraquat Exposure of Backpack Sprayers in Agricultural Area in Thailand. Human and Ecological Risk Assessment: an International Journal; 26; 2798-2811. doi: 10.1080/10807039.2019.1684187.
Pahapill, P. A. & Lozano, A. M. (2000). The Pedunculopontine Nucleus and Parkinson's Disease. Brain; 123; 1767-1783. doi: 10.1093/brain/123.9.1767.
Simon, P., Malatray, J. & Boissier, J. R. (1970). Antagonism by Amantadine of Prochlorpemazine-Induced Catalepsy. Journal of Pharmacy and Pharmacology; 22; 546-547. doi: 10.1111/j.2042-7158.1970.tb10567.x.
Tai, C. H., Pan, M. K., Lin, J. J., Huang, C. S., Yang, Y. C. & Kuo, C. C. (2012). Subthalamic Discharges as a Causal Determinant of Parkinsonian Motor Deficits. Annals of Neurology; 72; 464-476. doi: 10.1002/ana.23618.
Tanner, C. M., Kamel, F., Ross, G. W., Hoppin, J. A., Goldman, S. M., Korell, M., Marras, C., Bhudhikanok, G. S., Kasten, M., Chade, A. R., Comyns, K., Richards, M. B., Meng, C., Priestley, B., Fernandez, H. H., Cambi, F., Umbach, D. M., Blair, A., Sandler, D. P. & Langston, J. W. (2011). Rotenone, Paraquat, and Parkinson's Disease. Environmental Health Perspectives; 119; 866-872. doi: 10.1289/ehp.1002839.
Tieu, K. (2011). A Guide to Neurotoxic Animal Models of Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine; 1; 1-20. doi: 10.1101/cshperspect.a009316.
Watts, M. (2011). Pesticide action network Asia and the Pacific by Watts. http://wssroc.agron.ntu.edu.tw/note/Paraquat.pdf. Accessed: 7 January 2022.
Wichmann, T. & DeLong, M. R. (1996). Functional and Pathophysiological Models of the Basal Ganglia. Current Opinion in Neurobiology; 6; 751-758. doi: 10.1016/s0959-4388(96)80024-9.
Yttri, E. A. & Dudman, J. T. (2018). A Proposed Circuit Computation in Basal Ganglia: History-Dependent Gain. Movement Disorders Journal; 33; 704-716. doi: 10.1002/mds.27321.
Copyright (c) 2022 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement